Land Surface Temperature Dataset of Typical Stations in Middle Reaches of Heihe River Basin Based on UAV Remote Sensing(2019-07-09,V1)

Land surface temperature is a critical parameter in land surface energy balance. This dataset provides the monthly land surface temperature of UAV remote sensing for typical ground stations in the middle reaches of Heihe River basin from July to September in 2019. The land surface temperature retrieval algorithm is an improved single-channel algorithm, which was applied to the land surface brightness temperature data obtained by the UAV thermal infrared remote sensing sensor, and finally the land surface temperature data with a spatial resolution of 0.4m was obtained.

0 2020-07-31

NDVI Dataset of Typical Stations in Midstream of Heihe River Basin Based on UAV Remote Sensing (2019, V1)

NDVI is a very important vegetation index for the research of vegetation growth and land cover classification. This dataset provides a monthly land surface albedo of UAV remote sensing with a spatial resolution of 0.2 m. It measured in the midstream of Heihe River Basin during the vegetation growth season over typical stations in 2019. The pix4D mapper software was used for image mosaic and NDVI calculation.

0 2020-07-31

Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Sidalong Station, 2019)

This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from January 1 to April 12, 2019. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil water potential and moisture profile data were rejected because of sensor failure; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-6-10 10:30.

0 2020-07-25

Land Surface Albedo Dataset of Typical Stations in Middle Reaches of Heihe River Basin based on UAV Remote Sensing (2019, V1)

Surface albedo is a critical parameter in land surface energy balance. This dataset provides the monthly land surface albedo of UAV remote sensing for typical ground stations in the middle reaches of Heihe river basin during the vegetation growth stage in 2019. The algorithm for calculating albedo is an empirical method, which was developed based on a comprehensive forward simulation dataset based on 6S model and typical spectrums. This method can effectively transform the surface reflectance to the broadband surface albedo. The method was then applied to the surface reflectance acquired by UAV multi-spectral sensor and the broadband surface albedo with a 0.2-m spatial resolution was eventually obtained.

0 2020-07-16