Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (eddy covariance system of Sidaoqiao superstation, 2018)
  • 2019-09-15
  • 0
  • 1

This dataset contains the flux measurements from the Sidaoqiao superstation eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1374° E, 42.0012° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 873 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Latent heat flux during November 9 to 21, 2018 were missing due to the sensor malfunction of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

More
HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Sidaoqiao superstation, 2013)
  • 2019-09-15
  • 0
  • 1

This dataset includes data recorded by the Hydrometeorological observation network obtained from an observation system of Meteorological elements gradient of Sidaoqiao Superstation between 11 July, 2013, and 31 December, 2013. The site (101.137° E, 42.001° N) was located on a tamarix (Tamarix chinensis Lour.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 873 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HC2S3; 5, 7, 10, 15, 20 and 28 m, towards north), wind speed profile (010C; 5, 7, 10, 15, 20 and 28 m, towards north), wind direction profile (020C; 15 m, towards north), air pressure (CS100; in waterproof box), rain gauge (TE525M; 28 m, towards south), four-component radiometer (CNR4; 10 m, towards south), two infrared temperature sensors (SI-111; 10 m, towards south, vertically downward), two photosynthetically active radiation (PQS-1; 10 m, towards south, one vertically upward and one vertically downward), soil heat flux (HFP01SC; 3 duplicates with G1 below the tamarix; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (installed on 17 July, 2013, TCAV; -0.02, -0.04 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2 and -1.6 m), and soil moisture profile (install on 7 December, 2013, ML2X; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2 and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m, Ta_7 m, Ta_10 m, Ta_15 m, Ta_20 m and Ta_28 m; RH_5 m, RH_7 m, RH_10 m, RH_15 m, RH_20 m and RH_28 m) (℃ and %, respectively), wind speed (Ws_5 m, Ws_7 m, Ws_10 m, Ws_15 m, Ws_20 m and Ws_28 m) (m/s), wind direction (WD_15 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm and Ts_160 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The wind speed (10 m height) data were missing before 12 November, 2013 because of the sensor problem. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

More
HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Sidaoqiao superstation, 2013)
  • 2019-09-15
  • 0
  • 1

This dataset contains the flux measurements from the Sidaoqiao superstation eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 6 July to 31 December, 2013. The site (101.137° E, 42.001° N) was located in the Tamarix surface, Ejin Banner in Inner Mongolia. The elevation is 873 m. The EC was installed at a height of 8 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.12 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

More
Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (phenology camera observation dataset of Sidaoqiao superstation, 2018)
  • 2019-09-15
  • 0
  • 1

The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

More
HiWATER: Dataset of hydrometeorological observation network (an observation system of Meteorological elements gradient of Sidaoqiao Superstation, 2014)
  • 2019-09-15
  • 0
  • 1

This dataset contains the data of the meteorological element gradient observation system of the Sidaoqiao superstation downstream of the Heihe Hydrometeorological Observation Network from January 1, 2014 to December 31, 2014. The site is located in Sidaoqiao, Dalaihu Town, Ejin Banner, Inner Mongolia. The underlying surface is Tamarix. The latitude and longitude of the observation point is 101.1374E, 42.0012N, and the altitude is 873m. The air temperature, relative humidity and wind speed sensors are respectively set at 5m, 7m, 10m, 15m, 20m and 28m, with 6 layers facing the north; the wind direction sensor is set at 15m, facing the north; the barometer is installed in the waterproof box. The tipping bucket rain gauge is installed at 28m; the four-component radiometer is installed at 10m, facing south; two infrared thermometers are installed at 10m, facing south, the probe orientation is vertically downward; two photosynthetically active radiometers are installed At 10m, facing south, and the probe is vertically upward and downward respectively; the soil moisture sensor is installed 2m on the south side of the tower body, and the soil heat flow plates (self-correcting type) (3 pieces) are buried in turn in the ground 6cm deep; The average soil temperature sensor TCAV is buried in the ground 2cm, 4cm; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. Observed items include: wind speed (WS_5m, WS_7m, WS_10m, WS_15m, WS_20m, WS_28m) (unit: m/s), wind direction (WD_15m) (unit: degree), air temperature and humidity (Ta_5m, Ta_7m, Ta_10m, Ta_15m, Ta_20m, Ta_28m and RH_5m, RH_7m, RH_10m, RH_15m, RH_20m, RH_28m) (unit: centigrade, percentage), pressure (unit: hectopascal), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts/square meter), surface radiation temperature (IRT_1, IRT_2) (unit: centigrade), up and down photosynthetically active radiation (PAR_U_up, PAR_U_down) (unit: micromol/square Msec), average soil temperature (TCAV) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm) , Ms_120cm, Ms_160cm) (unit: volumetric water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; From September 8, 2014 to November 8, due to the sensor problems, the data is missing; on May 9, 2014, the soil moisture probe was re-buried, and the data before and after is inconsistent; (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2014-9-10 10:30; (6) the naming rules are: AWS+ site name. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).

More
HiWATER: MUlti-scale observation experiment on land surface temperature (MUSOES)- dataset of component temperature in the down of Heihe River Basin (Thermal imager)
  • 2019-09-15
  • 0
  • 1

This dataset includes component temperatures measured by the thermal imager at the Mixed Forest and Sidaoqiao stations between 23 July and 18 August, 2014. The Mixed Forest (101.1335 °E, 41.9903 °N, 874 m.a.s.l.) and Sidaoqiao (101.1374 °E, 42.0012 °N, 873 m.a.s.l.) stations were located in the downstream of the Heihe River basin, Dalaihubu Town, Ejin Banner, Inner Mongolia. At the Mixed Forest station, a Testo 890-2 thermal imager (Testo Inc., Germany) with a resolution of 640 × 480 pixels was employed to acquire brightness temperature images. The imager was manually operated from a 10-m height platform of the tower between 10:00-16:00 (China Standard Time, CST) with an observation interval of 1-h on cloudless days. On August 4th observations were acquired between 11:00 and 17:00 at an interval of 10-min to match observations acquired with an airborne TIR imager. The ground based imager was pointed to five viewing directions (southeast-SE, east-E, northeast-NE, northwest-NW, and southwest-SW) and was inclined 25°–45° below the horizon depending on viewing direction. At Sidaoqiao station, a Testo 875-2i imager (Testo Inc., Germany) with a resolution of 160 × 120 pixels was manually operated from a 10-m high platform to acquire brightness temperature images in directions SW, SE, NE, and NW. Depending on the targets in each viewing direction, the imager was inclined to 30°–45° below the horizon. Observations at Sidaoqiao and Mixed Forest stations were almost synchronous. Furthermore, visible images were taken simultaneously with the aforementioned two TIR imagers (2048 × 1536 pixels for Testo 890-2 and 640 × 480 pixels for Testo 875-2i).

More
Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of meteorological elements gradient of Sidaoqiao superstation, 2018)
  • 2019-09-15
  • 0
  • 1

This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Sidaoqiao Superstation from January 1 to December 31, 2018. The site (101.137° E, 42.001° N) was located on a tamarix (Tamarix chinensis Lour.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 873 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HC2S3; 5, 7, 10, 15, 20 and 28 m, towards north), wind speed profile (010C; 5, 7, 10, 15, 20 and 28 m, towards north), wind direction profile (020C; 15 m, towards north), air pressure (CS100; in waterproof box), rain gauge (TE525M; 28 m, towards south), four-component radiometer (CNR4; 10 m, towards south), two infrared temperature sensors (SI-111; 10 m, towards south, vertically downward), two photosynthetically active radiation (PQS-1; 10 m, towards south, one vertically upward and one vertically downward), soil heat flux (HFP01SC; 3 duplicates with G1 below the tamarix; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (installed on 17 July, 2013, TCAV; -0.02, -0.04 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6, -2.0 m), and soil moisture profile (install on 7 December, 2013, ML2X; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6, -2.0 m). The observations included the following: air temperature and humidity (Ta_5 m, Ta_7 m, Ta_10 m, Ta_15 m, Ta_20 m and Ta_28 m; RH_5 m, RH_7 m, RH_10 m, RH_15 m, RH_20 m and RH_28 m) (℃ and %, respectively), wind speed (Ws_5 m, Ws_7 m, Ws_10 m, Ws_15 m, Ws_20 m and Ws_28 m) (m/s), wind direction (WD_15 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The precipitation data was wrong during January to June because of the sensor problem; the air pressure data was wrong during July to October because of sensor line broken. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

More