Glacier boundary in Qilian Mountains (V2.0, 2019)

This dataset contains the glacier outlines in Qilian Mountain Area in 2019. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2019 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2019, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.

0 2021-06-15

Glacier inventory of Qilian Mountain Area (2020)

This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.

0 2021-06-15

The ice storage in upper Indus River basin using GPR (Ground Penetrating Radar) and GlabTop2 (Glacier Bed Topography version 2)

1) These data main included the GPR-surveyed ice thickness of six typical various-sized glaciers in 2016-2018; the GlabTop2-modeled ice thickness of the entire UIB sub-basins, discharge data of the hydrological stations, and related raw & derived data. 2) Data sources and processing methods: We compared the plots and profiles of GPR-surveyed ice bed elevation with the GlabTop2-simulated results and selected the optimal parametric scheme, then simulated the ice thickness of the whole UIB basin and assessed its hydrological effect. These processed results were stored as tables and tif format, 3) Data quality description: The simulated ice thickness has a spatial resolution of 30 m, and has been verified by the GPR-surveyed ice thickness for the MD values were less than 10 m. The maximum error of the GPR-measured data was 230.2 ± 5.4 m, within the quoted glacier error at ± 5%. 4) Synthesizing knowledge of the ice thickness and ice reserves provides critical information for water resources management and regional glacial scientific research, it is also essential for several other fields of glaciology, including hydrological effect, regional climate modeling, and assessment of glacier hazards.

0 2020-12-31