Land cover dataset of Pan-Third Pole major cities during 2000-2017

The land cover dataset of Pan third pole major cities contains 14 cities (Urumqi, Xining, Lanzhou, Dhaka, Kathmandu, Lucknow, Delhi, Lahore, Islamabad, Kabul, Dushanbe, Tashkent, Bishkek and Almaty) in 2000 / 2010 / 2017, the spatial resolution of this dataset is 30 m. It includes vegetation, cultivated land, artificial surface, water body and others. Based on globeland30, mcd12q1 and globcover2009, the consistent regions were identified and retained. The inconsistent regions were reclassified by deep learning method, and the final classification results were obtained by fusing the above regions. The data has been verified by visual interpretation. The data are applied to the study of construction land dynamics and anthropogenic influence in Pan-Third Pole cities. Data type: grid. Projection mode: UTM projection.

0 2020-07-29

Disribution of desert oil-gas fields and oasis cities in Central Asia (2012-2016)

The distribution data of Central Asia desert oil and gas fields are in the form of vector data in ". SHP". Including the distribution of oil and gas fields and major urban settlements in the five Central Asian countries. The data is extracted and cut from modis-mcd12q product. The spatial resolution of the product is 500 m, and the time resolution is 1 year. IGBP global vegetation classification scheme is adopted as the classification standard. The scheme is divided into 17 land cover types, among which the urban data uses the construction and urban land in the scheme. The data can provide data support for the assessment and prevention of sandstorm disasters in Central Asia desert oil and gas fields and green town.

0 2020-07-17

Land cover of core countries of the Belt and Road in 2015 (Version 1.0)

Based on 2015 ESA global land cover data (ESA GlobCover, 300 m grid), combined with the tsinghua university global land cover data (FROM GLC, 30 m grid)、NASA MODIS global land cover data (MCD12Q1, 300 m grid)、the United States Geological Survey (USGS global land data (GFSAD30, 30 m)、Japanese global forest data (PALSAR/PALSAR - 2, 25 m),we build the LUC classification system in the Belt and Road’s region and the rest of the data transformation rules of the classification system.We also build the land cover classification confidence function and the rules of fusing land classification to finish the Integration and modification of land cover products and finally complet the land use data in the Belt and Road’s region V1.0(64 + 1 countries, 2015, 1 km x 1 km grid, the first level classification).

0 2020-06-11

Dataset of key elements of desertification in typical watershed of Central and Western Asia (Amu River Basin)

Data Set of Key Elements of Desertification in Typical Watershed of Central and Western Asia includes four parts: distribution and change of agricultural land of Amu River Basin, distribution and change of grassland of Amu River Basin, distribution and change of shrub land of Amu River Basin, distribution and change of forests of Amu River Basin. the spatial resolution of data is 30 m. All the data is based on Landsat TM/ETM image data in 1990, 2000 and 2010. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101.

0 2020-05-29

Data set of land use types of five Central Asian countries (2000,2005,2010,2015)

The data of land use types in Central Asia comes from the global land cover products of the European Space Agency's Climate Change Initiative, which has high data quality in Central Asia and accurately depicts the annual dynamic change process of lake area. This data includes 22 land use types. By using the IPCC land use classification system, six land use types, including cultivated land, forest land, grassland, town, unused land and water area, are obtained through reclassification, with a spatial resolution of 300 meters. Including land use data of five Central Asian countries (including Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) in 2000, 2005 and 2015.

0 2020-05-27

Land cover of Tibet Plateau (2015)

The dataset is the land cover of Qing-Tibet Plateau in 2015. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.

0 2020-05-27

HiWATER: 1km/5day compositing Fraction Vegetation Cover (FVC) product of Heihe River Basin (2015)

The 1 km / 5-day FVC data set of Heihe River basin provides the 5-day FVC synthesis results in 2015. The data uses the data of Terra / MODIS, Aqua / MODIS, and domestic satellites fy3a / MERSI and fy3b / MERSI to build a multi-source remote sensing data set with a spatial resolution of 1 km and a time resolution of 5 days. The whole country is divided into different vegetation divisions and land types, and the conversion coefficient of NDVI and FVC is calculated respectively. The conversion coefficient look-up table and 1km / 5-day synthetic NDVI product production area 1km / 5-day synthetic FVC product are used. In the Heihe River Basin, 1 km / 5-day synthetic FVC products can directly obtain vegetation coverage ratio through high-resolution data to reduce the impact of low-resolution data heterogeneity; in addition, select the typical period of vegetation growth and change, obtain the corresponding growth curve parameters of each pixel by fitting the vegetation index of each pixel time series; and then cooperate with land use map and vegetation classification map, To find the representative uniform pixel of the region to train the conversion coefficient of vegetation index. Compared with the results of high-resolution aster reference FVC in Heihe River Basin, the first step is to aggregate the aster products in Heihe River basin to 1km scale by combining the measured ground data and using the scale up method, and to obtain the aster aggregate FVC data, which is based on spot vegetation remote sensing data released by geoland 2 project (geov1 for short) The results show that the results of geov1 are higher than those of ASTER image combined with ground measurement, and the results of 1 km / 5-day synthetic FVC products in Heihe River Basin are between the two, and the results of 1 km / 5-day synthetic FVC products in Heihe River Basin in the experimental area are better than those of geov1 products. In a word, the comprehensive utilization of multi-source remote sensing data to improve the estimation accuracy and time resolution of FVC parameter products can better serve the application of remote sensing data products.

0 2020-03-13

HiWATER: 1km/5day compositing Fraction Vegetation Cover (FVC) product of Heihe River Basin

The 1 km / 5-day FVC data set of Heihe River basin provides the 5-day FVC synthesis results from 2011 to 2014. The data uses the data of Terra / MODIS, Aqua / MODIS, and domestic satellites fy3a / MERSI and fy3b / MERSI to build a multi-source remote sensing data set with a spatial resolution of 1 km and a time resolution of 5 days. The whole country is divided into different vegetation divisions and land types, and the conversion coefficient of NDVI and FVC is calculated respectively. The conversion coefficient look-up table and 1km / 5-day synthetic NDVI product production area 1km / 5-day synthetic FVC product are used. In the Heihe River Basin, 1 km / 5-day synthetic FVC products can directly obtain vegetation coverage ratio through high-resolution data to reduce the impact of low-resolution data heterogeneity; in addition, select the typical period of vegetation growth and change, obtain the corresponding growth curve parameters of each pixel by fitting the vegetation index of each pixel time series; and then cooperate with land use map and vegetation classification map, To find the representative uniform pixel of the region to train the conversion coefficient of vegetation index. Compared with the results of high-resolution aster reference FVC in Heihe River Basin, the first step is to aggregate the aster products in Heihe River basin to 1km scale by combining the measured ground data and using the scale up method, and to obtain the aster aggregate FVC data, which is based on spot vegetation remote sensing data released by geoland 2 project (geov1 for short) The results show that the results of geov1 are higher than those of ASTER image combined with ground measurement, and the results of 1 km / 5-day synthetic FVC products in Heihe River Basin are between the two, and the results of 1 km / 5-day synthetic FVC products in Heihe River Basin in the experimental area are better than those of geov1 products. In a word, the comprehensive utilization of multi-source remote sensing data to improve the estimation accuracy and time resolution of FVC parameter products can better serve the application of remote sensing data products.

0 2020-03-13

HiWATER: 1km/5day compositing Leaf Area Index (LAI) product of Heihe River Basin, 2015

The 5-day Lai synthesis results in 2015 are provided by the 1 km / 5-day Lai data set of Heihe River Basin. The data set is constructed by using the data of Terra / MODIS, Aqua / MODIS, as well as the domestic satellites fy3a / MERSI and fy3b / MERSI to construct the multi-source remote sensing data set with a spatial resolution of 1 km and a time resolution of 5 days. Multi-source remote sensing data sets can provide more angles and more observations than a single sensor in a limited time. However, due to the difference of on orbit running time and performance of sensors, the observation quality of multi-source data sets is uneven. Therefore, in order to make more effective use of multi-source data sets, the algorithm first classifies the quality of multi-source data sets, which can be divided into first level data, second level data and third level data according to the observation rationality. The third level data are observations polluted by thin clouds and are not used for calculation. The purpose of quality evaluation and classification is to provide the basis for the selection of the optimal data set and the design of inversion algorithm flow. Leaf area index product inversion algorithm is designed to distinguish mountain land and vegetation type, using different neural network inversion model. Based on global DEM map and surface classification map, PROSAIL model is used for continuous vegetation such as grassland and crops, and gost model is used for forest and mountain vegetation. Using the reference map generated by the measured ground data of the forests in the upper reaches of Heihe River and the oasis in the middle reaches, and scaling up the corresponding high-resolution reference map to 1km resolution, compared with the Lai product, the product has a good correlation between the farmland and the forest area and the reference value, and the overall accuracy basically meets the accuracy threshold of 0.5%, 20% specified by GCOS. By cross comparing this product with Lais products such as MODIS, geov1 and glass, the accuracy of this Lai product is better than that of similar products compared with reference value. In a word, the synthetic Lai data set of 1km / 5 days in Heihe River Basin comprehensively uses multi-source remote sensing data to improve the estimation accuracy and time resolution of Lai parameter products, so as to better serve the application of remote sensing data products.

0 2020-03-13

HiWATER: 1km/5day compositing Leaf Area Index (LAI) product of the Heihe River Basin (2010-2014)

The 1 km / 5-day Lai data set of Heihe River basin provides the 5-day Lai synthesis results of 2010-2014. The data uses Terra / MODIS, Aqua / MODIS, as well as domestic satellites fy3a / MERSI and fy3b / MERSI sensor data to build a multi-source remote sensing data set with a spatial resolution of 1 km and a time resolution of 5 days. Multi-source remote sensing data sets can provide more angles and more observations than a single sensor in a limited time. However, due to the difference of on orbit running time and performance of sensors, the observation quality of multi-source data sets is uneven. Therefore, in order to make more effective use of multi-source data sets, the algorithm first classifies the quality of multi-source data sets, which can be divided into first level data, second level data and third level data according to the observation rationality. The third level data are observations polluted by thin clouds and are not used for calculation. The purpose of quality evaluation and classification is to provide the basis for the selection of the optimal data set and the design of inversion algorithm flow. Leaf area index product inversion algorithm is designed to distinguish mountain land and vegetation type, using different neural network inversion model. Based on global DEM map and surface classification map, PROSAIL model is used for continuous vegetation such as grassland and crops, and gost model is used for forest and mountain vegetation. Using the reference map generated by the measured ground data of the forests in the upper reaches of Heihe River and the oasis in the middle reaches, and scaling up the corresponding high-resolution reference map to 1km resolution, compared with the Lai product, the product has a good correlation between the farmland and the forest area and the reference value, and the overall accuracy basically meets the accuracy threshold of 0.5%, 20% specified by GCOS. By cross comparing this product with Lais products such as MODIS, geov1 and glass, the accuracy of this Lai product is better than that of similar products compared with reference value. In a word, the synthetic Lai data set of 1km / 5 days in Heihe River Basin comprehensively uses multi-source remote sensing data to improve the estimation accuracy and time resolution of Lai parameter products, so as to better serve the application of remote sensing data products.

0 2020-03-13