AWS data from typical glacier (2019-2020)

Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of 1.5 m temperature, 1.5 m humidity, 2 m wind speed, 2 m wind orientation, surface temperature, etc. Data from the automated weather station was collected using USB equipment at 19:10 on August 6, 2019, with a recording interval of 10 minutes, and data was downloaded on December 20, 2020. There is no missing data but a problem with the wind speed data after 9:30 on July 14, 2020 (most likely due to damage to the wind vane). Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The records include 1.5 meters of temperature, 1.5 meters of humidity, 2 meters of wind speed, 2 meters of wind direction, surface temperature, etc. The initial recording time is 15:00 on August 9, 2019, and the recording interval is 1 minute. The power supply is mainly maintained by batteries and solar panels. The automatic weather station has no internal storage. The data is uploaded to the Hobo website via GPRS every hour and downloaded regularly. At 23:34 on January 5, 2020, the 1.5 meter temperature and humidity sensor was abnormal, and the temperature and humidity data were lost. The data acquisition instrument will be retrieved on December 19, 2020 and downloaded to 19:43 on June 23, 2020 and 3:36 on September 25, 2020. Then the temperature and humidity sensors were replaced, and the observations resumed at 12:27 on December 21. The current data consists of three segments (2019.8.9-2020.6.30; 2020.6.23-2020.9.25; 2020.12.19-2020.12.29), Some data are missing after inspection. Some data are duplicated in time due to recording battery voltage, which needs to be checked. The meteorological observation data at the front end of Jiagang mountain glacier are collected by the automatic weather station Hobo rx3004-00-01 of onset company. The model of temperature and humidity probe is s-thb-m002, the model of wind speed and direction sensor is s-wset-b, and the model of ground temperature sensor is s-tmb-m006. The meteorological observation data at the front end of Jianyong glacier are collected by the US onset Hobo u21-usb automatic weather station. The temperature and humidity probe model is s-thb-m002, the wind speed and direction sensor model is s-wset-b, and the ground temperature sensor model is s-tmb-m006.

0 2021-04-07

WATER: Dataset of the automatic meteorological observations at the Pailugou grassland station in the Dayekou watershed (2008-2009)

The dataset of the automatic meteorological observations (2008-2009) was obtained at the Pailugou grassland station (E100°17'/N38°34', 2731m) in the Dayekou watershed, Zhangye city, Gansu province. The items included multilayer (1.5m and 3m) of the air temperature and air humidity, the wind speed (2.2m and 3.7m) and direction, the air pressure, precipitation, the global radiation, the net radiation, co2 (2.8m and 3.5m), the multilayer soil temperature (10cm, 20cm, 40cm, 60cm, 120cm and 160cm), soil moisture (10cm, 20cm, 40cm, 60cm, 120cm and 160cm), and soil heat flux (5cm, 10cm and 15cm). For more details, please refer to Readme file.

0 2021-03-10

Observation data glacier meteorological station from West Pamir in Tajikistan (2020)

The West Pamir glacier meteorological station in Tajikistan (38 ° 3 ′ 15 ″ n, 72 ° 16 ′ 52 ″ e, 3730m) is jointly constructed by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The observational data include hourly meteorological elements (average wind direction (°), average internal wind speed (M / s), maximum wind speed (°), maximum wind speed (M / s), average temperature (℃), maximum temperature (℃), minimum temperature (℃), average relative humidity (%), minimum relative humidity (%), average atmospheric pressure (HPA), maximum atmospheric pressure (HPA), minimum atmospheric pressure (HPA)). The data period is from November 1, 2019 to November 30, 2020 Meteorological observation data can provide important basic data for the study of the relationship between climate change, glaciers and water resources in the West Pamir mountains, and provide important data for the economic construction of the lower reaches of the Amu Darya River Basin in Tajikistan.

0 2021-02-03

Meteorological monitoring data of Kara-Batkak glacier in the Western Tianshan Mountains of Kyrgyzstan(2020)

Kara batkak glacier weather station in Western Tianshan Mountains of Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observational data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum instantaneous wind speed within minutes) Direction (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), time of maximum air pressure, time of minimum air pressure (HPA), time of minimum air pressure. Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.

0 2021-02-02

Meteorological data at the end of KANGXIWA glacier at mustag station (2015-2018)

(1) This data is the meteorological data of mustag station from 2015 to 2018. The observation point is located at 75.29 ° E and 38 ° 40 'n, with an altitude of 4924 meters. The parameters include temperature, relative humidity, air pressure, precipitation and wind speed. (2) Data source and processing method: the data comes from the half-hour data of the automatic weather station of the station. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. (3) Data quality description: data is discontinuous in some periods from January to March (4) The meteorological data can be used in the research of atmospheric science, climatology, physical geography and ecology.

0 2021-01-29

Meteorological data of 3650m at mustag station (2019)

(1) This data is the meteorological data of mustag station in 2019. The observation point is located at 75 ° 03.35'e and 38 ° 24.77'n, with an altitude of 3650m. The parameters include temperature, relative humidity, air pressure, precipitation, radiation and wind speed. (2) Data source and processing method: the data comes from the half-hour data of the automatic weather station of the station. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. (3) The meteorological data can be used in the research of atmospheric science, climatology, physical geography and ecology.

0 2021-01-29

Basic meteorological data of Sejila peak at Southeast Tibet station of Chinese Academy of Sciences (2016-2019)

This data is the data of automatic weather station (AWS, Campbell company) set up at the top of the mountain in the west slope of Sejila by the comprehensive observation and research station of Southeast Tibet alpine environment of Chinese Academy of Sciences in 2016. The geographical coordinates are 29.5919 n, 94.6102 e, with an altitude of 4640 m, and the underlying surface is alpine grassland. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s) and air pressure (MB) and daily accumulated value of precipitation. The original data is an average of 30 minutes before October 2018, and an average of 10 minutes after that. The temperature and humidity are measured by hmp155a temperature and humidity probe. The rainfall instrument model is rg3-m, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. In terms of data quality: the obvious abnormal values are eliminated, the battery is damaged due to snow in the first half of 2019, and the data is missing. The missing temperature data is corrected by using the temperature fitting regression of 43900 m at nearby stations, and the data is yellow. Please pay attention when using it; the monitoring of precipitation starts from August 2019. The data station is a high altitude meteorological station in Southeast Tibet, which will be updated from time to time. It can be used by scientific researchers studying ecology, climate, hydrology, glaciers, etc.

0 2021-01-27

Basic meteorological data of glacier moraine area at 24K in Galongla, Southeast Tibet station, Chinese Academy of Sciences (2018-2019)

The data are collected from the automatic weather station (AWS, Campbell company) in the moraine area of the 24K glacier in the Southeast Tibet Plateau, Chinese Academy of Sciences. The geographic coordinates are 29.765 ° n, 95.712 ° E and 3950 m above sea level. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), net radiation (w / m2), water vapor pressure (kPa) and air pressure (mbar). In the original data, an average value was recorded every 30 minutes before October 2018, and then an average value was recorded every 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The net radiation probe is nr01, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the data has undergone strict quality control. The original abnormal data of 10 minutes and 30 minutes are removed first, and then the arithmetic mean of each hour is calculated. Finally, the daily value is calculated. If the number of hourly data is less than 24, the data is removed, and the corresponding date data in the data table is empty. In addition to the lack of some parameter data due to the thick snow and low temperature in winter and spring, the data can be used by scientific researchers who study climate, glacier and hydrology through strict quality control.

0 2021-01-27

Basic meteorological data of Yigong (2018-2019)

This data is the data of the automatic weather station (AWS, Campbell company) set up in Yigong Zangbu basin by the Southeast Tibet alpine environment comprehensive observation and research station of Chinese Academy of Sciences in 2018. The geographic coordinates are 30.1741 n, 94.9334 e, and the altitude is 2282m. The underlying surface is grassland. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), water vapor pressure (kPa) and air pressure (MB) and daily accumulated value of precipitation. The original data is an average value recorded in 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The rainfall instrument is tb4, the atmospheric pressure sensor is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the quality of the original data is better, less missing. The data station is a meteorological station in the lower altitude of the Qinghai Tibet Plateau, which will be updated from time to time in the future. It can be used by researchers studying climate, hydrology, glaciers, etc.

0 2021-01-27

Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin(Huailai station-automatic weather station-10m tower, 2019)

This dataset includes data obtained from the automatic weather station (AWS) at the observation system of Meteorological elements of Huailai station between January 1 and December 31, 2019. The site (115.7880° E, 40.3491° N) was located on a maize surface, which is near Donghuayuan Town of Huailai city in Hebei Province. The elevation is 480 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (5 m, north), wind speed and direction profile (10 m, north), air pressure (in the box), rain gauge (10 m), four-component radiometer (5 m, south), two infrared temperature sensors (5 m, south, vertically downward), soil heat flux (-0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and a TCAV averaging soil thermocouple probe (-0.02, -0.04 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and average soil temperature (TCAV, ℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Guo et al. (2020) (for sites information), Liu et al. (2013) (for data processing) in the Citation section.

0 2021-01-08