MODIS evapotranspiration data of 18 key nodes of Pan third pole (2000-2016)

Evapotranspiration (ET) is the process which changes from liquid or solid to vapor returning to the atmosphere in hydrological cycles since precipitation arrives at the ground. It is usually the sum of evaporation of surface soil moisture and transpiration (T) in plants. It is the key parameter in the study of global change. At present, THE EVAPotranspiration data product of MODIS satellite is an important data source for monitoring the temporal and spatial changes of the surface, and surface evapotranspiration is an important part of water balance in the earth-gas interaction. Book which has high space-time resolution MODIS16 products as the foundation, global land evaporation in area along the whole area separated from 31 key nodes and Laos, Cambodia's railway, China and myanmar oil and gas pipeline and elegant high iron three key verification area ET cutting, estimation, get the key node area of 8 to 16 days ET products, time range is 2000-2016. Is mainly used in the areas related to all the way the surface of water and energy balance in the process of simulation and dynamic monitoring and management of regional water resources rationally, especially to the scientific allocation of water resources and realize the efficient utilization of water resources has important practical significance, to be able to have a purpose of the related research of area along the area to provide data support and reference.

0 2020-08-06

NDVI Dataset of Typical Stations in Midstream of Heihe River Basin Based on UAV Remote Sensing (2019, V1)

NDVI is a very important vegetation index for the research of vegetation growth and land cover classification. This dataset provides a monthly land surface albedo of UAV remote sensing with a spatial resolution of 0.2 m. It measured in the midstream of Heihe River Basin during the vegetation growth season over typical stations in 2019. The pix4D mapper software was used for image mosaic and NDVI calculation.

0 2020-07-31

Long-term C- and L-band SAR backscatter data for monitoring post-fire vegetation recovery in the tundra environment of the Anaktuvuk River, Alaska (Version 1.0) (2002-2017)

Wildfires can strongly affect the frozen soil environment by burning surface vegetation and soil organic matter. Vegetation affected by fire can take many years to return to mature pre-fire levels. In this data set, the effects of fires on vegetation regrowth in a frozen-ground tundra environment in the Anaktuvuk River Basin on the North Slope of Alaska were studied by quantifying changes in C-band and L-band SAR backscatter data over 15 years (2002-2017). After the fire, the C- and L-band backscattering coefficients increased by 5.5 and 4.4 dB, respectively, in the severe fire area compared to the unburned area. Five years after the fire, the difference in C-band backscattering between the fire zone and the unburned zone decreased, indicating that the post-fire vegetation level had recovered to the level of the unburned zone. This long recovery time is longer than the 3-year recovery estimated from visible wavelength-based NDVI observations. In addition, after 10 years of vegetation recovery, the backscattering of the L-band in the severe fire zone remains approximately 2 dB higher than that of the unburned zone. This continued difference may be caused by an increase in surface roughness. Our analysis shows that long-term SAR backscattering data sets can quantify vegetation recovery after fire in an Arctic tundra environment and can also be used to supplement visible-wavelength observations. The temporal coverage of the backscattering data is from 2002 to 2017, with a time resolution of one month, and the data cover the Anaktuvuk River area on the North Slope of Alaska. The spatial resolution is 30~100 m, the C- and L-band data are separated, and a GeoTIFF file is stored every month. For details on the data, see SAR Backscattering Data of the Anaktuvuk River Basin on the North Slope of Alaska - Data Description.

0 2020-07-28

Land Surface Albedo Dataset of Typical Stations in Middle Reaches of Heihe River Basin based on UAV Remote Sensing (2019, V1)

Surface albedo is a critical parameter in land surface energy balance. This dataset provides the monthly land surface albedo of UAV remote sensing for typical ground stations in the middle reaches of Heihe river basin during the vegetation growth stage in 2019. The algorithm for calculating albedo is an empirical method, which was developed based on a comprehensive forward simulation dataset based on 6S model and typical spectrums. This method can effectively transform the surface reflectance to the broadband surface albedo. The method was then applied to the surface reflectance acquired by UAV multi-spectral sensor and the broadband surface albedo with a 0.2-m spatial resolution was eventually obtained.

0 2020-07-16

The data set is NDVI data of long time series acquired by NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensor. The time range of the data set is from 1982 to 2015. In order to remove the noise in NDVI data, maximum synthesis and multi-sensor contrast correction are carried out. A NDVI image is synthesized every half month. The data set is widely used in the analysis of long-term vegetation change trend. The data set is cut out from the global data set, so as to carry out the research and analysis of the source areas of the three rivers separately. The data format of this data set is GeoTIFF with spatial resolution of 8 km and temporal resolution of 2 weeks, ranging from 1982 to 2015. Data transfer coefficient is 10000, NDVI = ND/10000.

0 2020-06-15

Land cover data of the Belt and Road's region (Version 1.0) (2015)

Based on 2015 ESA global land cover data (ESA GlobCover, 300 m grid), combined with the Tsinghua university global land cover data (FROM GLC, 30 m grid), NASA MODIS global land cover data (MCD12Q1, 300 m grid), the United States Geological Survey (USGS global land data (GFSAD30, 30 m), Japanese global forest data (PALSAR/PALSAR - 2, 25 m), we build the LUCC classification system in the Belt and Road's region and the rest of the data transformation rules of the classification system. We also build the land cover classification confidence function and the rules of fusing land classification to finish the integration and modification of land cover products and finally completed the land use data in the Belt and Road's region V1.0 (64 + 1 countries, 2015, 1 km x 1 km grid, the first level classification).

0 2020-06-11

Sea surface temperature (SST) dataset of the sea area along the Blet and Road (1981-2016)

The Optimum Interpolation sea surface temperature (OISST) analysis product provides complete ocean temperature fields constructed by using an optimum interpolation (OI) technique. The SST analysis has a spatial grid resolution of 0.25 degree and temporal resolution of 1 day. The product uses Advanced Very High Resolution Radiometer (AVHRR) satellite data from the Pathfinder AVHRR SST dataset when available for September 1981 through December 2005, and the operational Navy AVHRR Multi-Channel SST data for 2006 to the present day. Pathfinder AVHRR SST was chosen because of good agreement with the in-situ observation data. The product also uses sea ice datasets, in situ data from ships and buoys, and includes a large-scale adjustment of satellite biases with respect to the in-situ data. In areas where sea ice is present, SST is estimated from sea ice concentration datasets from NASA GSFC before 2005 and then from NOAA NCEP from 2005 onwards. The SST product is of great importance in the study of storm tide. Based on the SST product from 1981 to 2016, GEE was used to tailor the masks of the sea area along the Blet and Road. Finally, the 16-day synthetic sea surface temperature dataset of the sea area along the Blet and Road from 1981 to 2016 was obtained.

0 2020-06-11

The 30-m land cover data of Tibetan Plateau (2010)

These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) ( and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.

0 2020-06-03

The NPP products of MODIS in Sanjiangyuan (1985-2015)

The data set contains NPP products data produced by the maximum synthesis method of the three source regions of the Yellow River, the Yangtze River and the Lancang River. The data of remote sensing products MOD13Q1, MOD17A2, and MOD17A2H are available on the NASA website ( The MOD13Q1 product is a 16-d synthetic product with a resolution of 250 m. The MOD17A2 and MOD17A2H product data are 8-d synthetic products, the resolution of MOD17A2 is 1 000 m, and the resolution of MOD17A2H is 500 m. The final synthetic NPP product of MODIS has a resolution of 1 km. The downloaded MOD13Q1, MOD17A2, and MOD17A2H remote sensing data products are in HDF format. The data have been processed by atmospheric correction, radiation correction, geometric correction, and cloud removal. 1) MRT projection conversion. Convert the format and projection of the downloaded data product, convert the HDF format to TIFF format, convert the projection to the UTM projection, and output NDVI with a resolution of 250 m, EVI with a resolution 250 m, and PSNnet with resolutions of 1 000 m and 500 m. 2) MVC maximum synthesis. Synthesize NDVI, EVI, and PSNnet synchronized with the ground measured data by the maximum value to obtain values corresponding to the measured data. The maximum synthesis method can effectively reduce the effects of clouds, the atmosphere, and solar elevation angles. 3) NPP annual value generated from the NASA-CASA model.

0 2020-06-03

MODIS vegetation index dataset in Sanjiangyuan (2000-2018)

The data set is MODIS vegetation index data (MOD13Q1). The source areas of the three rivers are extracted to carry out the research and analysis of the source areas of the three rivers separately. MOD13Q1 is a 16-day composite vegetation index, including normalized vegetation index (NDVI) and enhanced vegetation index (EVI). The spatial scope of Sanjiang Source covers two MODIS files (h25v05 and h26v05). Data storage format is hdf. Each file contains 12 bands: Normalized Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Data Quality (VI Quality), Red Reflectance, Near Infrared Reflectance (NIR Reflectance), Blue Reflectance, Mid Infrared Reflectance, Observation. Viewzenith angle, sun zenith angle, relative azimuth angle, composite day of the year and pixel reliability. The data format of this data set is hdf, spatial resolution is 250m, temporal resolution is 16 days, time range: February 2000 to October 2018.

0 2020-06-03