Daily lake ice extent and cover proportion dataset of the Tibetan Plateau based on MODIS (2002-2018)
  • 2019-10-21
  • 0
  • 1

There are many lakes on the Tibetan Plateau. The phenology and duration of lake ice age in this area is very sensitive to regional and global climate change, so it is used as a key indicator of climate change research, especially the comparative study of environmental changes in the Earth's three poles. However, due to its harsh natural environment and sparse population, it lacked routine field measurements of lake ice phenology. Using the Moderate-resolution Imaging Spectroradiometer (MODIS) to normalize the Different Snow Index (NDSI) data, the lake ice was monitored at a resolution of 500 meters to fill the observation gap. The traditional snow map algorithm was used to detect the daily ice volume and coverage extent of lakes under sunny condition. The spatial and temporal continuity of lake surface conditions was applied to re-determine the daily ice volume and coverage extent of lakes under cloud cover condition through a series of steps. Time series analysis was performed on 308 lakes larger than 3 k㎡ to determine effective record of lake ice extent and coverage, then to form a daily lake ice extent and coverage data set. And furthermore, four lake ice phenological parameters: freeze-up start ( FUS), freeze-up end (FUE), break-up start (BUS), and break-up end (BUE) can be obtained from 216 lakes of the data set, and two parameters: FUS and BUE can be obtained from the other 92 lakes.

More
River lake ice range / coverage data set v1.0
  • 2019-10-21
  • 0
  • 1

There are many lakes in the Qinghai Tibet Plateau. The glacial phenology and duration of lakes in this region are very sensitive to regional and global climate change, so they are used as the key indicators of climate change research, especially the comparative study of the three polar environmental changes of the earth. However, due to its poor natural environment and sparse population, there is a lack of conventional field measurement of lake ice phenology. The lake ice was monitored with a resolution of 500 meters by using the normalized difference snow index (NDSI) data of MODIS. The traditional snow map algorithm is used to detect the lake daily ice amount and coverage under the condition of sunny days, and the lake daily ice amount and coverage under the condition of cloud cover are re determined through a series of steps based on the spatiotemporal continuity of the lake surface conditions. Through time series analysis, 308 lakes larger than 3km2 are identified as effective records of lake ice range and coverage, forming a daily lake ice range and coverage data set, including 216 lakes.

More
River ice cover dataset of Erqis River Basin (2004-2005) v1.0
  • 2019-10-21
  • 0
  • 1

River ice is the main component of the cryosphere, and the freezing of rivers in the polar region has a significant impact on the Arctic shipping and transportation industry. With the construction of "ice silk road" between China and Russia, monitoring the change of river ice in Erqis river basin can provide theoretical basis for river navigation. The sparse distribution of hydrological stations in the Arctic limits the study of river ice. The limited available data of hydrological stations show that the trend of river ice rupture is ahead of schedule, but the specific climate mechanism driving this trend is very complex. Therefore, optical data with high temporal resolution (such as MODIS products) are suitable for monitoring river ice phenology and mapping river ice cover range, which is helpful to understand the process of river ice rupture. Based on MODIS and passive microwave data, a method of monitoring river ice in Erqis River Basin by using different remote sensing data is realized in this study, in order to analyze the phenological parameters of river ice such as the time of river closure, the time of river closure, the speed of river opening, the speed of river closure and the duration of freezing period. At the same time, it is helpful to understand the response of river ice breaking process to Arctic climate warming.

More
Data set of lake ice type in alpine region (2015-2018) v1.0
  • 2019-10-21
  • 0
  • 1

Lake ice is an important parameter of the cryosphere, its change is closely related to the climate parameters such as temperature and precipitation, and can directly reflect the climate change, so it is an important indicator of the regional climate parameter change. However, because the research area is often located in the area with poor natural environment and few population, large-scale field observation is difficult to carry out, so sentinel 1 satellite data is used. The spatial resolution of 10 m and the temporal resolution of better than 30 days are used to monitor the changes of different types of lake ice, which fills the observation gap. Hmrf algorithm is used to classify different types of lake ice. Through time series analysis of the distribution of different types of lake ice in three polar regions with a part area of more than 25km2, a lake ice type data set is formed. The distribution of different types of lake ice in these lakes can be obtained. The data includes the serial number of the processed lake, the year in which it is located and the serial number in the time series, vector and other information. The data set includes the algorithm used, sentinel-1 satellite data used, imaging time, polar area, lake ice type and other information. Users can determine the changes of different types of lake ice in the time series according to the vector file.

More
River lake ice phenology data in QPT (2002-2018) v1.0
  • 2019-10-21
  • 0
  • 1

River lake ice phenology is sensitive to climate change and is an important indicator of climate change. 308 excel file names correspond to Lake numbers. Each excel file contains six columns, including daily ice coverage information of corresponding lakes from July 2002 to June 2018. The attributes of each column are: date, lake water coverage, lake water ice coverage, cloud coverage, lake water coverage and lake ice coverage after cloud treatment. Generally, the ice cover area ratio of 0.1 and 0.9 is used as the basis to distinguish the lake ice phenology. The excel file contained in the data set can further obtain four lake ice phenological parameters: Fus, fue, bus, bue, and 92 lakes. Two parameters, Fus and bue, can be obtained.

More
Inventory dataset of glacial lakes in Himachal Pradesh, India (2004)
  • 2019-09-15
  • 0
  • 1

This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 5. This glacial lake inventory referred to Landsat 4/5 (MSS and TM), SPOT(XS), IRS-1C/1D(LISS-III) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2004. 6. Glacial Lake Inventory Coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin and others. 7. The Glacial Lake Inventory includes glacial lake inventory, glacial lake type, glacial lake width, glacial lake orientation, glacial lake length from the glacier and other attributes. 8. Projection parameter: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For a detailed data description, please refer to the data file and report.

More
Dataset of microwave brightness temperature and the freeze-thaw process for medium-to-large lakes in the High Asia Region (2002-2016)
  • 2019-09-15
  • 0
  • 1

The High Asia region is an area sensitive to global changes in mid-latitude regions and is a hotspot for research. The lakes in the territory are scattered, and the lake freeze-thaw process is one of the key factors sensitive to global change. Due to the large difference in the dielectric constant between ice and water, satellite-borne passive microwave remote sensing is weather insensitive and has a high revisiting rate; thus, it can achieve rapid monitoring of the freeze-thaw state of lakes. According to the area ratio of the lake and the land surface in the sub-pixels of passive microwave radiometer data, this data set represents the lake brightness temperature information of the pixel (sub-pixel level) by applying the hybrid pixel decomposition method in order to monitor the lake freeze-thaw process in the High Asia region. Thus, by adopting a variety of passive microwave data, time series of lake brightness temperature and freeze-thaw status were obtained for a total of 51 medium to large lakes from 2002 to 2016 in the High Asia region. Using cloudless MODIS optical products as validation data, three lakes of different sizes in different regions of High Asia, i.e., Hoh Xil Lake, Dagze Co Lake, and Kusai Lake, were selected for freeze-thaw detection validation. The results indicated that the lake freeze-thaw parameters obtained by microwave and optical remote sensing were highly consistent, and the correlation coefficients reached 0.968 and 0.987. This data set contained the time series brightness temperature of lakes and the freeze-thaw parameters of lake ice, which could be used to further invert the characteristic parameters of lakes and enhance the understanding of lake ice freezing and thawing in the High Asia region. This database will be useful in the assessment of climatic and environmental changes in the High Asia region and in global climatic change response models. The data set consists of two parts: the passive microwave remote sensing brightness temperature data set of 51 lakes in the High Asia region from 2002 to 2016, with an observation interval of 1 to 2 days, and the lake ice freeze-thaw data set obtained by estimation of the lake brightness temperature. The files are the lake brightness temperature data via the nearest neighbour method and pixel decomposition in the form of a .zip file (12 MB) and the lake freeze-thaw data set for 51 lakes in the High Asia region from 2002 to 2016 in the form of an .xls file (0.1 MB).

More
Inventory data of glacial lake in west China (2015)
  • 2019-09-15
  • 0
  • 1

This data set is based on China's second inventory data, Landsat series optical image data with a spatial resolution of 30 meters and cloud coverage of less than 10% and SRTM and other data using ArcGIS, ENVI, Google Earth and other processing software and extracting the glacial lake boundary within 10 km of the glacier boundary by artificial visual interpretation. In addition, the data set adds attributes such as glacial lake type, the mountain range, the province, and the basin to the data as well as quality checking and accuracy verification for the interpreted data. The spatial resolution is 30 meters. It consists of two parts: the glacial lake distribution area vector file and the Inventory Data set of glacial lakes in west China in 2015. It can provide reference data for glacial lake-glacier coupling, water resource utilization and management in west China and can also be used as basic data for regional climate change and cryospheric studies.

More
Data on glacial lakes in the TPE (V1.0) (1990, 2000, 2010)
  • 2019-09-14
  • 0
  • 1

There are three types of glacial lakes: supraglacial lakes, lakes attached to the end of the glacier and lakes not attached to the end of the glacier. Based on this classification, the following properties are studied: the variation in the number and area of glacial lakes in different basins in the Third Pole region, the changes in extent in terms of size and area, distance from glaciers, the differences in area changes between lakes with and without the supply of glacial melt water runoff, the characteristics of changes in the glacial lake area with respect to elevation, etc. Data source: Landsat TM/ETM+ 1990, 2000, 2010. The data were visually interpreted, which included checking and editing by comparing the original image with Google Earth images when the area was greater than 0.003 square kilometres. The data were applied to glacial lake changes and glacial lake outburst flood assessments in the Third Pole region. Data type: Vector data. Projected Coordinate System: Albers Conical Equal Area.

More
Inventory dataset of glacial lakes in the Sikkim Region, India (2000)
  • 2019-09-14
  • 0
  • 1

This glacial lake inventory receives joint support from International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 1. This glacial lake inventory referred to Landsat 4/5 (MSS, TM/1984/1999), Landsat 7 (TM & ETM+), IRS-1C, LISS-III (1995 IRS-1C), (1997 IRS-1D) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2000. 2. Glacial Lake Inventory Coverage: Tista Basin, Sikkim Region 3. Glacial Lake Inventory includes: glacial lake inventory, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 4. Projection parameter: Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Sikkim) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00’00” E Central parallel: 26°00’00” N Scale factor: 0.998786 Standard parallel 1: 23°09’28.17” N Standard parallel 2: 28°49’8.18” N Minimum X Value: 2545172 Maximum X Value: 2645240 Minimum Y Value: 1026436 Maximum Y Value: 1163523 For a detailed data description, please refer to the data file and report.

More