Rare animals survey dataset for the Three-River Headwater Region (2016-2017)

The data set contains the rare animal survey data for the Sanjiangyuan area from 2016 to 2017, including the latitude and longitude of the survey site, the length of the sample line, animal discovery time, animal names, quantity, location of the occurrence, type of habitat, affiliated families, etc.

0 2021-04-18

MODIS daily cloud-free snow cover area product for Sanjiangyuan from 2000 to 2018

The dataset was produced based on MODIS data. Parameters and algorithm were revised to be suitable for the land cover type in the Three-River-Source Regions. By using the Markov de-cloud algorithm, SSM/I snow water equivalent data was fused to the result. Finally, high accuracy daily de-cloud snow cover data was produced. The data value is 0(no snow) or 1(snow). The spatial resolution is 500m, the time period is from 2000-2-24 to 2018-12-31. Data format is geotiff, Arcmap or python+GDAL were recommended to open and process the data.

0 2021-04-18

Monthly standard weather station dataset in Sanjiangyuan (1957-2015)

Monthly meteorological data of Sanjiangyuan includes 32 national standard meteorological stations. There are 26 variables: average local pressure, extreme maximum local pressure, date of extreme maximum local pressure, extreme minimum local pressure, date of extreme minimum local pressure, average temperature, extreme maximum temperature, date of extreme maximum temperature, extreme minimum temperature and date of extreme minimum temperature, average temperature anomaly, average maximum temperature, average minimum temperature, sunshine hours, percentage of sunshine, average relative humidity, minimum relative humidity, date of occurrence of minimum relative humidity, precipitation, days of daily precipitation >=0.1mm, maximum daily precipitation, date of maximum daily precipitation, percentage of precipitation anomaly, average wind speed, maximum wind speed, date of maximum wind speed, maximum wind speed, wind direction of maximum wind speed, wind direction of maximum wind speed and occurrence date of maximum wind speed. The data format is txt, named by the site ID, and each file has 26 columns. The names and units of each column are explained in the SURF_CLI_CHN_MUL_MON_readme.txt file. site_id lat lon elv name_cn 52754 37.33 100.13 8301.50 Gangcha 52833 36.92 98.48 7950.00 Wulan 52836 36.30 98.10 3191.10 Dulan 52856 36.27 100.62 2835.00 Qiapuqia 52866 36.72 101.75 2295.20 Xining 52868 36.03 101.43 2237.10 Guizhou 52908 35.22 93.08 4612.20 Wudaoliang 52943 35.58 99.98 3323.20 Xinghai 52955 35.58 100.75 8120.00 Guinan 52974 35.52 102.02 2491.40 Tongren 56004 34.22 92.43 4533.10 Togton He 56018 32.90 95.30 4066.40 Zaduo 56021 34.13 95.78 4175.00 Qumalai 56029 33.02 97.02 3681.20 Yushu 56033 34.92 98.22 4272.30 Maduo 56034 33.80 97.13 4415.40 Qingshui River 56038 32.98 98.10 9200.00 Shiqu 56043 34.47 100.25 3719.00 Guoluo 56046 33.75 99.65 3967.50 Dari 56065 34.73 101.60 8500.00 Henan 56067 33.43 101.48 3628.50 Jiuzhi 56074 34.00 102.08 3471.40 Maqu 56080 35.00 102.90 2910.00 Hezuo 56106 31.88 93.78 4022.80 Suo County 56116 31.42 95.60 3873.10 Dingqing 56125 32.20 96.48 3643.70 Nangqian 56128 31.22 96.60 3810.00 Leiwuqi 56137 31.15 97.17 3306.00 Changdu 56151 32.93 100.75 8530.00 Banma 56152 32.28 100.33 8893.90 Seda

0 2021-04-18

Vegetation quadrat survey dataset in Maduo County (2016)

The data set includes the sample survey data of alpine grassland and alpine meadow in Maduo County in September 2016. The sample size is 50cm × 50cm. The investigation contents include coverage, species name, vegetation height, biomass (dry weight and fresh weight), longitude and latitude coordinates, slope, aspect, slope position, soil type, vegetation type, surface characteristics (litter, gravel, wind erosion, water erosion, saline alkali spot, etc.), utilization mode, utilization intensity, etc.

0 2021-04-18

Boundary vector data set of Sanjiangyuan National Park

Sanjiangyuan National Park includes three parks: the source of the Yangtze River, the source of the Yellow River and the source of the Lancang River, with a total area of 123100 square kilometers, which is between 89 ° 50'57 "- 99 ° 14'57" E and 32 ° 22'36 "- 36 ° 47'53" n, accounting for 31.16% of the land area of Sanjiangyuan. This dataset is based on the digital map of Sanjiangyuan National Park in the master plan of Sanjiangyuan National Park. The data includes the boundaries of the Yangtze River source Park, the Yellow River source Park and the Lancang River Park. The data format is ShapeFile. ArcMap is recommended to open data.

0 2021-04-16

250m remote sensing phenological product data set of Sanjiangyuan National Park (2001-2018)

This dataset is land surface phenology estimated from 16 days composite MODIS NDVI product (MOD13Q1 collection6) in the Three-River-Source National Park from 2001 to 2018. The spatial resolution is 250m. The variables include Start of Season (SOS) and End of Season (EOS). Two phenology estimating methods were used to MOD13Q1, polynomial fitting based threshold method and double logistic function based inflection method. There are 4 folders in the dataset. CJYYQ_phen is data folder for source region of the Yangtze River in the national park. HHYYQ_phen is data folder for source region of Yellow River in the national park. LCJYYQ_phen is data folder for source region of Lancang River in the national park. SJY_phen is data folder for the whole Three-River-Source region. Data format is geotif. Arcmap or Python+GDAL are recommended to open and process the data.

0 2021-03-28

Remote sensing products of snow depth in Sanjiangyuan (1980-2018)

This dataset was derived from long-term daily snow depth in China based on the boundary of the three-river-source area. The snow depth ranges from 0 to 100 cm, and the temporal coverage is from January 1 1980 to December 31 2018. The spatial and temporal resolutions are 0.25o and daily, respectively. Snow depth was produced from satellite passive microwave remote sensing data which came from three different sensors that are SMMR, SSM/I and SSMI/S. Considering the systematic bias among these sensors, the inter-sensor calibrations were performed to obtain temporal consistent passive microwave remote sensing data. And the long-term daily snow depth in China were produced from this consistent data based on the spectral gradient method.For header file information, refer to the data set header.txt.

0 2021-03-28

Dataset of ZY-3 02 satellite images (2017)

The data set is remote sensing image of Resource 3 No. 02 (ZY3-02). ZY3-02 was successfully launched from Taiyuan Satellite Launch Center at 11:17 on May 30, 2016 by Long March 4 B carrier rocket. China-made satellite imagery will be further strengthened in the areas of land surveying and mapping, resource survey and monitoring, disaster prevention and mitigation, agriculture, forestry and water conservancy, ecological environment, urban planning and construction, transportation and other fields. List of files: ZY302_PMS_E98.8_N37.4_201707_L1A0000156704 ZY302_PMS_E100.4_N37.0_20171127_L1A0000217243 ZY302_TMS_E99.5_N37.0_20170717_L1A0000160059 ZY302_TMS_E100.3_N36.6_20171127_L1A0000217279 ZY302_TMS_E100.4_N37.0_20170529_L1A0000139947 Folder Naming Rules: Satellite Name Sensor Name Central Longitude Central Latitude Acquisition Time L1****

0 2021-03-28

Dataset of ZY-3 satellite images (2017)

The major deserts in China include the Taklamakan Desert, Gurban Tunggut Desert, Qaidam Desert, Kumtag Desert, Badain Jaran Desert, Tengger Desert, Ulan Buh Desert, Hobq Desert, MU US Desert, Hunshandake Desert, Hulunbuir Sands, and Horqin Sands. All the desert boundaries were derived from Google Earth Pro® via manual interpretation. We delineated the desert boundaries using the Digital Global Feature Imagery and SpotImage (2011, 10 m resolution) collections of Google Earth Pro®, whose spatial resolution is finer than 30 m. The acquisition time of most images was in 2011.

0 2021-03-28

Dataset of GF-2 satellite images (2017)

Gf-2 satellite is the first civil optical remote sensing satellite independently developed by China with a spatial resolution better than 1 meter. It is equipped with two high-resolution 1-meter panchromatic and 4-meter multi-spectral cameras, and the spatial resolution of the sub-satellite can reach 0.8 meters. This data set is the remote sensing image data of 6 jing gaofen-2 satellite in 2017.The folder list is: GF2_PMS1_E100.5_N37.2_20171013_L1A0002678101 GF2_PMS1_E100.5_N37.4_20171013_L1A0002678097 GF2_PMS1_E100.6_N37.6_20171013_L1A0002678096 GF2_PMS2_E100.3_N37.4_20170810_L1A0002534662 File naming rules: satellite name _ sensor name _ center longitude _ center latitude _ imaging time _L****

0 2021-03-28