Contact Support

Institute of Tibetan Plateau Research, CAS

Address:16 Lincui Road, Chaoyang District, Beijing 100101, P.R. China

E-mail: data@itpcas.ac.cn

phone:010-64833041

dsds
  • 2019-08-19
  • 0
  • 1

The dataset of airborne imaging spectrometer (OMIS-II) mission was obtained in the Linze station-Linze grassland flight zone on Jun. 6, 2008. Data after radiometric correction and calibration and geometric approximate correction were released. The flying time of each route was as follows: {| ! id ! flight ! file ! starttime ! lat ! long ! alt ! image linage ! endtime ! lat ! long ! alt |- | 1 || 1-13 || 2008-06-06_09-32-22_DATA.BSQ || 09:56:32 || 39.167 || 100.044 || 2945.9 || 5718 || 10:02:53 || 39.362 || 100.191 || 2936.7 |- | 2 || 1-12 || 2008-06-06_10-02-38_DATA.BSQ || 10:08:42 || 39.373 || 100.193 || 2956.1 || 5565 || 10:14:53 || 39.182 || 100.049 || 2953.1 |- | 3 || 1-11 || 2008-06-06_10-14-39_DATA.BSQ || 10:19:51 || 39.177 || 100.039 || 2931.2 || 5432 || 10:25:54 || 39.363 || 100.179 || 2958.3 |- | 4 || 1-10 || 2008-06-06_10-25-39_DATA.BSQ || 10:31:50 || 39.376 || 100.182 || 2959.7 || 5396 || 10:37:50 || 39.190 || 100.041 || 2952.7 |- | 5 || 1-9 || 2008-06-06_10-37-35_DATA.BSQ || 10:43:06 || 39.179 || 100.026 || 2956.4 || 5399 || 10:49:06 || 39.368 || 100.169 || 2939.0 |- | 6 || 1-8 || 2008-06-06_10-48-51_DATA.BSQ || 10:55:20 || 39.383 || 100.174 || 2943.2 || 5643 || 11:01:36 || 39.1922 || 100.029 || 2944.8 |- | 7 || 1-7 || 2008-06-06_11-01-22_DATA.BSQ || 11:07:04 || 39.185 || 100.0175 || 2947.2 || 5306 || 11:12:58 || 39.373 || 100.159 || 2943.9 |- | 8 || 1-6 || 2008-06-06_11-12-43_DATA.BSQ || 11:18:57 || 39.386 || 100.162 || 2948.1 || 5604 || 11:25:10 || 39.196 || 100.018 || 2950.5 |- | 9 || 1-5 || 2008-06-06_11-24-56_DATA.BSQ || 11:30:22 || 39.188 || 100.006 || 2934.0 || 5469 || 11:36:26 || 39.378 || 100.149 || 2935.4 |- | 10 || 1-4 || 2008-06-06_11-36-12_DATA.BSQ || 11:42:30 || 39.389 || 100.151 || 2935.4 || 5570 || 11:48:41 || 39.198 || 100.007 || 2949.0 |- | 11 || 1-3 || 2008-06-06_11-48-27_DATA.BSQ || 11:54:21 || 39.205 || 100.005 || 2915.2 || 5028 || 11:59:57 || 39.380 || 100.138 || 2908.8 |- | 12 || 1-2 || 2008-06-06_11-59-42_DATA.BSQ || 12:06:00 || 39.395 || 100.142 || 2931.0 || 5523 || 12:12:08 || 39.205 || 99.999 || 2950.0 |- | 13 || 1-1 || 2008-06-06_12-11-53_DATA.BSQ || 12:18:17 || 39.197 || 99.985 || 2916.5 || 5451 || 12:24:20 || 39.389 || 100.131 || 2907.9 |}

More
HiWATER: 30m month compositing Fraction Vegetation Cover (FVC) product of Heihe River Basin
  • 2019-07-24
  • 0
  • 1

30m month compositing Fraction Vegetation Cover (FVC) data set of Heihe River Basin provides the results of monthly FVC synthesis in 2011-2014. The data constructs multi-angle observation data sets by using China's domestic satellite HJ/CCD data with high temporal resolution (2 days after networking) and spatial resolution (30m) , and divides the country into different vegetation divisions and land types. The conversion coefficients of NDVI and FVC are calculated respectively, and use the calculated conversion coefficient lookup table and monthly compositing NDVI to produce the regional monthly compositing FVC products. The 30m month compositing FVC product in the Heihe River Basin can directly obtain the vegetation coverage ratio through high-resolution data, and mitigate the influence of low-resolution data heterogeneity; in addition, selecting the typical period of vegetation growth change, by fitting the vegetation index of each pixel time series to obtain the growth curve parameters that correspond to each pixel; then the land use map and the vegetation classification map are combined to find the representative uniform pixels of the region for training the conversion coefficients of the vegetation index. Compared with the ASTER reference FVC results, the 30m/month compositing FVC product in the Heihe River Basin is slightly higher than the ASTER reference result, but the overall deviation is not large, and the maximum value of the root mean square error (RMSE) of the product and the reference value is less than 0.175. In addition, compared with the ground survey data of Huailai experimental site in Hebei Province, the 30 m/month compositing FVC products generally reflect the seasonal variation of vegetation growth, and the deviation from the ground survey data is less than 0.1. At the same time, compared with the ground measurements of vegetation coverage in many watersheds in Northeast, North China and Southeast China, the overall error between the compositing FVC products and the ground measurements is less than 0.2. In all, the 30m/month compositing FVC data set of Heihe River Basin comprehensively utilizes multi-temporal and multi-angle remote sensing data to improve the estimation accuracy and time resolution of FVC parameter products, so as to better serve the application of remote sensing data products.

More
Dune-types of Chinese major deserts (2001-2015)
  • 2019-07-24
  • 0
  • 1

According to ecological indicator, the dune-type is classified into mobile dune, semifixed dune and fixed dune. Vegetation cover is one of the most common indicators of dune type. We classified the dunes into mobile, semifixed, and fixed dunes according to the vegetation percentage (the percent tree cover plus the percent nontree vegetation) from 0 to 10, 10 to 30, and 30 to 100. The data used herein for dune-type classification was the MODIS Vegetation Continuous Field (VCF) product (MOD44B collection 6) with a spatial resolution of 231.656 m, time span was from 2001 to 2015, study area was Chinese major deserts, please see the Elaborate boundary of Chinese major deserts (2013). The dataset could provide study reference for the science community of desert sciences.

More
HiWATER: 250m/1km month compositing Fraction Vegetation Cover (FVC) product of Heihe River Basin
  • 2019-07-24
  • 0
  • 1

250m/1km month compositing Fraction Vegetation Cover (FVC) data set of Heihe River Basin provides the results of monthly FVC synthesis in 2011-2014. The data is produced by using MODIS vegetation index products MOD13A2 and MOD13Q1 based on dimidiate pixel model.

More
MODIS Daily Cloud-free Snow Cover Product over the Tibetan Plateau (2002-2015)
  • 2019-07-23
  • 0
  • 1

Snow duration on the Tibetan Plateau changes relatively quickly, and the mountainous areas around the plateau are characterized by abundant snow and ice resources and active atmospheric convection. Optical remote sensing is often affected by clouds. Snow cover monitoring needs to consider the cloud-removal problem on a daily time scale. Taking full account of the terrain of the Tibetan Plateau and the characteristics of snow on the mountains, this data set adopted a combination of various cloud-removing processes and steps to gradually remove the daily snow cover by maintaining the cloud-classify accuracy of the snow cover. In addition, a step-by-step comprehensive classification algorithm was formed, and the “MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)” was completed. Two snow seasons from October 1, 2009, to April 30, 2011, were selected as test data for algorithm research and accuracy verification, and the snow depth data provided by 145 ground stations in the study area were used as a ground reference. The results showed that in the plateau region, when the snow depth exceeds 3 cm, the total classification accuracy of the cloud-free snow cover products is 96.6%, and the snow cover classification accuracy is 89.0%. The whole algorithm procedure, based on WGS84 projected MODIS snow products (MOD10A1 and MYD10A1) with medium resolution, results in a small loss of cloud-removal accuracy, which made the data highly reliable.

More
HiWATER: Dataset of ASTER Fractional Vegetation Cover in the crop land experimental area of the middle reaches of the Heihe River Basin
  • 2019-07-21
  • 0
  • 1

This data is the ASTER fractional vegetation cover in a growth cycle observed in the Yingke Oasis Crop land. Data observations began on May 30, 2012 and ended on September 12. Original data: 1.15m resolution L1B reflectivity product of ASTER 2.Vegetation coverage data set of the artificial oasis experimental area in the middle reaches Data processing: 1.Preprocessing of ASTER reflectance products to obtain ASTER NDVI; 2.Through the NDVI-FVC nonlinear transformation form, the ASTER NDVI and the ground measured FVC are used to obtain the conversion coefficients of NDVI to FVC at different ASTER scales. 3.Apply this coefficient to the ASTER image to obtain a vegetation coverage of 15m resolution; 4.Aggregate 15m resolution ASTER FVC to get 1km ASTER FVC product

More
WATER: Dataset of airborne microwave radiometers (L&K bands) mission in the Linze-Biandukou flight zone on May 25 2008
  • 2019-07-20
  • 0
  • 1

This dataset was acquired on May 25, 2008 by the L&K-band airborne microwave radiometer at the Linze-Biandukou flight area.The L-band frequency is 1.4 GHz, the rear view is 35 degrees, and the dual-polarization (H and V) information is obtained; the K-band frequency is 18.7 GHz, with zenith angle observation, and there is no polarization information. The plane took off from Zhangye Airport at 9:51 (Beijing time, the same below) and landed at 15:01. The observation from 10:10 to 12:30 was in the Linze area, the flight altitude is about 1800m, and the flight speed is about 250km/hr. The plane flew low over Linze Reservoir from 12:31 to 12:38. The plane works in the Bianduko aerophotography region from13:13 to 14:35, the flight altitude is about 3000m, and the flight speed is about 250km/hr. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are all from non-imaging observation, the digital values obtained from instantaneous observation are recorded by text files, the longitude and latitude of flight and the attitude parameters of aircraft are recorded by GPS data. At the same time, through the respective clock records of the microwave radiometer and GPS, the microwave observation can be linked with the GPS record, and the microwave observation can be matched with the geographical coordinate information. Due to the relatively low resolution of the microwave radiometer, the leeway, welter and pitching of the aircraft are generally neglected in data processing. According to the target of use and relative flight altitude (H), after calibration and coordinate matching, the observation information can be rasterized. The resolution (x) of the L and K bands can be considered consistent with the observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24H. After the above steps, products that can be directly used by users can be obtained.

More
Data on Glacial Lakes in the Third Pole Region (V1.0) ( (1990, 2000, 2010)
  • 2019-07-19
  • 0
  • 1

There are three types of glacial lakes: supraglacial lakes, lakes attached to the end of the glacier and lakes not attached to the end of the glacier. Based on this classification, the following properties are studied: the variation in the number and area of glacial lakes in different basins in the Third Pole region, the changes in extent in terms of size and area, distance from glaciers, the differences in area changes between lakes with and without the supply of glacial melt water runoff, the characteristics of changes in the glacial lake area with respect to elevation, etc. Data source: Landsat TM/ETM+ 1990, 2000, 2010. The data were visually interpreted, which included checking and editing by comparing the original image with Google Earth images when the area was greater than 0.003 square kilometres. The data were applied to glacial lake changes and glacial lake outburst flood assessments in the Third Pole region. Data type: Vector data. Projected Coordinate System: Albers Conical Equal Area.

More
China lake datasets (1960s-2015)
  • 2019-07-19
  • 0
  • 1

The multi-decadal lake number and area changes in China during 1960s–2015 are derived from historical topographic maps and >3831 Landsat satellite images, including lakes as fine as ≥1 km2 in size. The total area of lakes in China has increased by 5858.06 km2 (9%) between 1960s and 2015, and with heterogeneous spatial variations. Lake area changes in the Tibetan Plateau, Xinjiang, and Northeast Plain and Mountain regions reveal significant increases of 5676.75, 1417.15, 1134.87 km2 (≥15%), respectively, but the Inner-Mongolian Plateau shows an obvious decrease of 1223.76 km2 (22%). We find that 141 new lakes have appeared predominantly in the arid western China; but 333 lakes, mainly located in the humid eastern China, have disappeared over the past five decades.

More
WATER: MODIS Dataset
  • 2019-07-18
  • 0
  • 1

This is the MODIS data with 499 scenes covering the whole Heihe River basin in 2008 and 2009. The acquisition time is from 2008-04-23 to 2008-09-30 (295 scenes), and from 2009-05-01 to 2009-10-01 (204 scenes). MODIS data products have 36 channels with resolutions of 250m, 500m and 1000m respectively. The data format is pds, unprocessed, and the MODIS processing software is filed together with the original data. MODIS remote sensing data of Heihe Integrated Remote Sensing Joint Test are provided by Gansu Meteorological Bureau.

More