China long-sequence surface freeze-thaw dataset——decision tree algorithm (1987-2009)

China long-sequence surface freeze-thaw dataset——decision tree algorithm (1987-2009), is derived from the decision tree classification using passive microwave remote sensing SSM / I brightness temperature data. This data set uses the EASE-Grid projection method (equal cut cylindrical projection, standard latitude is ± 30 °), with a spatial resolution of 25.067525km, and provides daily classification results of the surface freeze-thaw state of the main part of mainland China. The data set is stored by year and consists of 23 folders, from 1987 to 2009. Each folder contains the day-to-day surface freeze-thaw classification results for the current year. It is an ASCII file with the naming rule: SSMI-frozenYYYY ***. Txt, where YYYY represents the year and *** represents the Julian date (001 ~ 365 / 366). The freeze-thaw classification result txt file can be opened and viewed directly with a text program, and can also be opened with ArcView + Spatial Analyst extension module or Arcinfo's Asciigrid command. The original frozen and thawed surface data was derived from daily passive microwave data processed by the National Snow and Ice Data Center (NSIDC) since 1987. This data set uses EASE-Grid (equivalent area expandable earth grid) as a standard format . China's surface freeze-thaw long-term sequence data set-The decision tree algorithm (1987-2009) attributes consist of the spatial-temporal resolution, projection information, and data format of the data set. Spatio-temporal resolution: the time resolution is day by day, the spatial resolution is 25.067525km, the longitude range is 60 ° ~ 140 ° E, and the latitude is 15 ° ~ 55 ° N. Projection information: Global equal-area cylindrical EASE-Grid projection. For more information about EASE-Grid projection, see the description of this projection in data preparation. Data format: The data set consists of 23 folders from 1987 to 2009. Each folder contains the results of the day-to-day surface freeze-thaw classification of the year, and is stored as a txt file on a daily basis. File naming rules: For example, SMI-frozen1994001.txt represents the surface freeze-thaw classification results on the first day of 1994. The ASCII file of the data set is composed of a header file and a body content. The header file consists of 6 lines of description information such as the number of rows, the number of columns, the coordinates of the lower left point of the x-axis, the coordinates of the lower left point of the y-axis, the grid size, and the value of the data-less area. Array, with columns as the priority. The values ​​are integers, from 1 to 4, 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. Because the space described by all ASCII files in this data set is nationwide, the header files of these files are unchanged. The header files are extracted as follows (where xllcenter, yllcenter and cellsize are in m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 All ASCII files in this data set can be opened directly with a text program such as Notepad. Except for the header file, the main content is a numerical representation of the surface freeze-thaw state: 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. If you want to display it with an icon, we recommend using ArcView + 3D or Spatial Analyst extension module to read it. During the reading process, a grid format file will be generated. The displayed grid file is the graphic representation of the ASCII code file. Reading method:  [1] Add 3D or Spatial Analyst extension module in ArcView software, and then create a new View;  [2] Activate View, click the File menu, select the Import Data Source option, the Import Data Source selection box pops up, select ASCII Raster in Select import file type: in this box, and a dialog box for selecting the source ASCII file automatically pops up Find any ASCII file in the data set and press OK;  [3] Type the name of the Grid file in the Output Grid dialog box (a meaningful file name is recommended for later viewing), and click the path where the Grid file is stored, press Ok again, and then press Yes (to select an integer) Data), Yes (call the generated grid file into the current view). The generated file can be edited according to the Grid file standard. This completes the process of displaying the ASCII file as a Grid file.  [4] During batch processing, you can use ARCINFO's ASCIIGRID command to write an AML file, and then use the Run command to complete in the Grid module: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}

0 2020-04-01

AMSR-E/aqua daily gridded brightness temperatures of China

This dataset includes passive microwave remote sensing brightness temperatures data for longitude and latitude projections and 0.25 degree resolution from 2002 to 2008 in China. 1. Data processing process: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method. 2. Data format: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3. Data naming: ID2rx-AMSRE-aayyyydddp.vnn.ccc (China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4. Cutting range: Corner Coordinates: Upper Left (60.0000000, 55.0000000) (60d 0'0.00 "E, 55d 0'0.00" N) Lower Left (60.0000000, 15.0000000) (60d 0'0.00 "E, 15d 0'0.00" N) Upper Right (140.0000000, 55.0000000) (140d 0'0.00 "E, 55d 0'0.00" N) Lower Right (140.0000000, 15.0000000) (140d 0'0.00 "E, 15d 0'0.00" N) Center (100.0000000, 35.0000000) (100d 0'0.00 "E, 35d 0'0.00" N) Origin = (60.000000000000000, 55.000000000000000) 5. Data projection: GEOGCS ["WGS 84", DATUM ["WGS_1984", SPHEROID ["WGS 84", 6378137,298.257223563, AUTHORITY ["EPSG", "7030"]], TOWGS84 [0,0,0,0,0,0,0], AUTHORITY ["EPSG", "6326"]], PRIMEM ["Greenwich", 0, AUTHORITY ["EPSG", "8901"]], UNIT ["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY ["EPSG", "4326"]]

0 2020-04-01

MODIS daily cloudless snow products in the Tibetan Plateau (2002-2010)

This data is 2002.07.04-2010.12.31 MODIS daily cloudless snow products in the Tibetan Plateau. Due to the snow and cloud reflection characteristics, the use of optical remote sensing to monitor snow is severely disturbed by the weather. This product is based on the most commonly used cloud removal algorithm, using the MODIS daily snow product and passive microwave data AMSR-E snow water equivalent product, and the daily cloudless snow product in the Tibetan Plateau is developed. The accuracy is relatively high. This product has important value for real-time monitoring of snow cover dynamic changes on the Tibetan Plateau. Projection method: Albers Conical Equal Area Datum: D_Krasovsky_1940 Spatial resolution: 500 m Data format: tif Naming rules: maYYMMDD.tif, where ma represents the data name; YY represents the year (01 represents 2001, 02 represents 2002 ...); MM represents the month (01 represents January, 02 represents February ...); DD represents the day (01 Means 1st, 02 means 2nd ...).

0 2020-03-31

1:100000 topographic index of the Heihe River Basin

The “Eco-Hydro Integrated Atlas of Heihe River Basin” is supported by the Synthetic Research on the Eco-hydrological Process of the Heihe River Basin– a key project to provide data collation and service for the Heihe River Basin eco-hydrological process integration study. This atlas will provide researchers with a comprehensive and detailed introduction to the Heihe River Basin background and basic data sets. The 1:100,000 topographic framing index of the Heihe River Basin is one of the basic geographs of the atlas, with a scale of 1:2500000, Lambert conformal conic projection, and a standard latitude: north latitude 25 47 . Data source: 1:100000 topographic map index data, Heihe River boundary.

0 2020-03-31

Remote sensing mosaicing map of Heihe River Basin

The “Eco-Hydrology Integrated Atlas of the Heihe River Basin ” was supported by the major program: Synthetic Research on the Eco-hydrological Process of the Heihe River Basin. It provided data collation and service for Synthetic Research on the Eco-hydrological Process of the Heihe River Basin. The Atlas will provide researchers with a comprehensive and detailed introduction of the background and basic data sets of the Heihe River Basin. Eco-Hydrology Integrated Atlas of the Heihe River Basin: Remote Sensing Mosaicing of the Heihe River Basin, scale 1:2500000, positive-axis equivalence conical projection, standard parallel: north latitude 25 47 Data source: Landsat TM Mosaic Image of the Heihe River Basin in 2010, Heihe River Basin Boundary,River Network Dataset of the Heihe River Basin, The Resident Site Distribution Data of the Heihe River Basin, etc.

0 2020-03-31

Long time series vegetation index data set of spot & vegetation in China (1998-2007)

The VEGETATION sensor sponsored by the European Commission was launched by SPOT-4 in March 1998. Since April 1998, SPOTVGT data for global vegetation coverage observation has been received by Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides relevant parameters (such as calibration coefficient). Finally, the Belgian flemish institute for technological research (Vito)VEGETATION processing Centre (CTIV) is responsible for preprocessing into global data of 1km per day. Pretreatment includes atmospheric correction, radiation correction, geometric correction, production of 10 days to maximize the synthesized NDVI data, setting the value of -1 to -0.1 to -0.1, and then converting to the DN value of 0-250 through the formula DN=(NDVI+0.1)/0.004. The data set is a subset extraction from China, including spectral reflectance of four bands synthesized every 10 days and 10 days' maximum NDVI. It is data from 1998 to 2007 with a spatial resolution of 1km and a temporal resolution of 10 days. File format: Hfr and img files. The file naming rule is: CHN _ NDV _ YYYMMDD, where YYYYMMDD is the date of the day represented by the file and is also the main identifier different from other files. The remote sensing image files with suffix. IMG and. HDF used by users to analyze vegetation index can be opened in ENVI and ERDAS software. Coordinate system and projection Plate_Carree (Lon/Lat) PROJ_CENTER_LON 0.000000 PROJ_CENTER_LAT 0.000000 PIXEL_SIZE_UNITS DEGREES/PIXEL PIXEL_SIZE_X 0.0089285714 PIXEL_SIZE_Y 0.0089285714 SEMI_AXIS_MAJ 6378137.000000 SEMI_AXIS_MIN 6356752.314000 UL_LON (DEG) 73.000000 UL_LAT (DEG) 54.000000 LR_LON (DEG) 135.500000 LR_LAT (DEG) 5.000000 Corner coordinates are: Corner Coordinates: Upper Left ( 69.9955357, 55.0044643) Lower Left ( 69.9955357, 14.9955358) Upper Right ( 137.0044641, 55.0044643) Lower Right ( 137.0044641, 14.9955358) Where Upper Left is the upper left corner, Lower Left is the lower left corner, Upper Right is the upper right corner, and Lower Right is the lower right corner.

0 2020-03-31

Thematic data on desertification (land desertification, salinization and vegetation degradation) in central Asia (2015)

Thematic data on desertification (land desertification, salinization and vegetation degradation) in Central Asia, includes three parts: Distribution Map of Sandy Land in Central Asia, Distribution Map of Salinized Land in Central Asia and Distribution Map of Land Vegetation Degradation in Central Asia. The spatial resolution of the data is 1km, the time resolution is in 2015. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101.

0 2020-03-30

LANDSAT MSS remote sensing dataset in Western China

The dataset covers western China. MSS remote sensing images Dataset properties: Pixel Size: 60m Reflective bands 4-7 (Landsat 1-3) and Bands 1-4 (Landsat 4-5) Output Format: GeoTIFF Resampling method: cubic convolution (CC) Map Projection: UTM – WGS 84 Polar Stereographic for the continent of Antarctica. Image Orientation: Map (North Up) Data sources were partially downloaded from http://eros.usgs.gov/ and some were collected from various projects. The data folder is named the row and column number where the image is located. The folder contains the MSS 4 band images (* .tif), header files (* .met, * .hdr), and thumbnails (jpg). The naming format of image files is row and column number_TM image mark (2m), and image acquisition time_band number. It is mainly used for thematic analysis and compilation of different scale thematic maps on agriculture, forestry, water, soil, geology, geography, geography, surveying and mapping, regional planning, and environmental monitoring.

0 2020-03-30

Dataset of land data assimilation result of west China (2002)

The research project on land surface data assimilation system in western China belongs to the major research plan of "environmental and ecological science in western China" of the national natural science foundation. the person in charge is researcher Li Xin of the institute of environment and engineering in cold and arid regions of the Chinese academy of sciences. the project runs from January 2003 to December 2005. The output data set of the Land Surface Assimilation System in Western China is one of the data achievements of the project. It is a Chinese Land Surface Data Assimilation System constructed by Dr. Huang Chun Lin and researcher Li Xin of the Institute of Cold and Arid Region Environment and Engineering, Chinese Academy of Sciences. CoLM model is used as a model operator to couple microwave radiation transmission models for different surface states such as soil (including melting and freezing), snow cover, etc. and to assimilate passive microwave observations (SSM/I and AMSR-E), so that the system can finally output assimilation data of soil moisture, soil temperature, snow cover, frozen soil, sensible heat, latent heat, evaporation, etc. with higher accuracy. Data format and naming: It is stored in a monthly folder and contains 24 hours of data every day. The naming rules are as follows: YYYMMDDHH.grid, where YY is the year (2002), MM is the month, DD is the day, HH is the hour,. grid and. flux are file extensions, the former is the state variable output result and the latter is the flux output result. The file format is a binary FLOAT value, that is, every 4 bytes represents a value.

0 2020-03-29

Land cover products of China

China's land cover data set includes 5 products: 1) glc2000_lucc_1km_China.asc, a Chinese subset of global land cover data based on SPOT4 remote sensing data developed by the GLC2000 project. The data name is GLC2000.GLC2000 China's regional land cover data is directly cropped from global cover data. For data description, please refer to http : //www-gvm.jrc.it/glc2000/defaultGLC2000.htm 2) igbp_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR remote sensing data supported by IGBP-DIS, the data name is IGBPDIS; IGBPDIS data was prepared using the USGS method, using April 1992 to March 1992 The AVHRR data developed global land cover data with a resolution of 1km. The classification system adopts a classification system developed by IGBP, which divides the world into 17 categories. Its development is based on continents. Applying AVHRR for 12 months to maximize synthetic NDVI data, 3) modis_lucc_1km_China_2001.asc, a subset of MODIS land cover data products in China, the data name is MODIS; MODIS China's regional land cover data is directly cropped from global cover data, and its data description please refer to http://edcdaac.usgs.gov/ modis / mod12q1v4.asp. 4. umd_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR data produced by the University of Maryland, the data name is UMd; the five bands of UMd based on AVHRR data and NDVI data are recombined to suggest a data matrix, using Methodology carried out global land cover classification. The goal is to create data that is more accurate than past data. The classification system largely adopts the classification scheme of IGBP. 5) westdc_lucc_1km_China.asc, China ’s 2000: 100,000 land cover data organized and implemented by the Chinese Academy of Sciences, combined with Yazashi conversion (the largest area method), and finally obtained a land use data product of 1km across the country, data name WESTDC. WESTDC China's regional land cover data is based on the results of a 1: 100,000 county-level land resource survey conducted by the Chinese Academy of Sciences. The land use data were merged and converted into a vector (the largest area method). The Chinese Academy of Sciences resource and environment classification system is adopted. 2: Data format: ArcView GIS ASCII 3: Mesh parameters:       ncols 4857       nrows 4045       xllcorner -2650000       yllcorner 1876946       cellsize 1000       NODATA_value -9999 4: Projection parameters:       Projection ALBERS       Units METERS       Spheroid Krasovsky       Parameters:       25 00 0.000 / * 1st standard parallel       47 00 0.000 / * 2nd standard parallel       105 00 0.000 / * central meridian       0 0 0.000 / * latitude of projection's origin       0.00000 / * false easting (meters)       0.00000 / * false northing (meters)

0 2020-03-29