Landsat normalized difference water index (NDWI) products over the Tibetan Plateau (1980s-2019)

The dataset is the normalized difference water index (NDWI) products from 1970s to 2020 over the Tibetan Plateau。The dataset is producted based on Landsat surface reflectance dataset. It is calculated by the NDWI equation which use the difference ratio between the green band and NIR band to enhance the water information, and then to weaken the information of vegetation, soil, buildings and other targets.And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow.NDWI is usually used to extract surface water information effectively, therefore it is widely used in water resoureces, hydrology, forestry and agriculture.

0 2022-04-19

A daily, 0.01° Snow water equivalent dataset for Tibetan Plateau (2000-2018)

Funded by the National Key R&D Program "Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", "Multi-scale Observation and Data Product Development of Key Cryosphere Parameters", Changes and impacts of glaciers, snow cover and permafrost and how to deal with them (Grant NO.2019QZKK0201), and Pan-tertiary environmental change and the construction of green silk road (Grant NO.XDA20000000), the research group of Zhang Yinsheng, Institute of Qinghai-Tibet Plateau, Chinese Academy of Sciences developed downscaled snow water equivalent products in the Qinghai-Tibet Plateau. The sub-pixel space-time decomposition algorithm was used to downscale the 0.05° daily snow depth data set (2000-2018) over the Qinghai-Tibet Plateau. And the snow depth depletion model was used to supplement the estimation of the snow depth value in the shallow snow area that cannot be detected by passive microwave remote sensing. Finally, based on the snow density grid data, the snow depth data is converted into snow water equivalent data.

0 2022-04-18

A daily, 0.05° Snow depth dataset for Tibetan Plateau (2000-2018)

Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.

0 2022-04-18

Land cover data for Southeast Asia (2015)

This data is the land cover data at 30m resolution of Southeast Asia in 2015. The data format of the data is NetCDF, and the variable name is "land cover type". The data was obtained by mosaicing and extracting the From-GLC data. Several land cover types, such as snow and ice that do not exist in Southeast Asia were eliminated.The legend were reintegrated to match the new data. The data provide information of 8 land cover types: cropland, forest, grassland, shrub, wetland, water, city and bare land. The overall accuracy of the data is 71% (Gong et al., 2019). The data can provide the land cover information of Southeast Asia for hydrological models and regional climate models.

0 2022-04-18

Fraction of Absorbed Photosynthetically Active Radiation (FPAR) across Tibetan Plateau from 1987 to 2020

Fraction of Absorbed Photosynthetically Active Radiation (FPAR) is a key physiological variable in the study of carbon cycling and is one of the basic variables to describe vegetation ecosystems. The classification results of surface vegetation types in Qinghai-Tibet Plateau region are obtained based on the Landsat reflectance data(30m spatial resolution). According to NDVI of different vegetation types, the remote sensing inversion model is constructed to produce the growing season FPAR products for each vegetation type. This product can be used as one of the parameters to calculate vegetation carbon sequestration and evaluate vegetation ecosystem status.

0 2022-04-18

Active landslides by InSAR recognition in Three-River-Parallel territory of Qinghai-Tibet Plateau (2007-2019)

Aiming at the 179000 km2 area of the pan three rivers parallel flow area of the Qinghai Tibet Plateau, InSAR deformation observation is carried out through three kinds of SAR data: sentinel-1 lifting orbit and palsar-1 lifting orbit. According to the obtained InSAR deformation image, it is comprehensively interpreted in combination with geomorphic and optical image features. A total of 949 active landslides below 4000m above sea level were identified. It should be noted that due to the difference of observation angle, sensitivity and observation phase of different SAR data, there are some differences in the interpretation of the same landslide with different data. The scope and boundary of the landslide need to be corrected with the help of ground and optical images. The concept of landslide InSAR recognition scale is different from the traditional spatial resolution and mainly depends on the deformation intensity. Therefore, some landslides with small scale but prominent deformation characteristics and strong integrity compared with the background can also be interpreted (with SAR intensity map, topographic shadow map and optical remote sensing image as ground object reference). The minimum interpretation area can reach several pixels. For example, a highway slope landslide with only 4 pixels is interpreted with reference to the highway along the Nujiang River.

0 2022-04-18

Hyperspectral remote sensing data of typical vegetation along Sichuan Tibet Railway (2019)

This data set is hyperspectral observation data of typical vegetation along Sichuan Tibet Railway in September 2019, using the airborne spectrometer of Dajiang M600 resonon imaging system. Including the hyperspectral data observed in the grassland area of Lhasa in 2019, with its own latitude and longitude. The hyperspectral survey was mainly sunny. Before flight, whiteboard calibration was carried out; when data were collected, there was a target (that is, the standard reflective cloth suitable for the grass), which was used for spectral calibration; there were ground mark points (that is, letters with foam plates), and the longitude and latitude coordinates of each mark were recorded for geometric precise calibration. The DN value recorded by Hyperspectral camera of UAV can be converted into reflectivity by using Spectron Pro software. Hyperspectral data is used to extract spectral characteristics of different vegetation types, vegetation classification, inversion of vegetation coverage and so on.

0 2022-04-18

Tibetan Plateau surface spectral data set (2019)

The spectral characteristics of different land use types are mainly determined by spectrograph in the surface spectral data set of Qinghai Tibet Plateau. The measured ground features are mainly divided into woodland, (Alpine) shrub, (Alpine) grassland, wetland, cultivated land and bare land. It includes the field observation points in Lhasa, Linzhi, Shigatse, Ali and Naqu. The spectral characteristics of forests were measured based on the different growth stages of vegetation; The spectral characteristics of grassland were measured based on different coverage; The spectral characteristics of cultivated land were measured based on the main crop types, rape flowers and highland barley; The measurements of wetlands were conducted on the rivers, low-lying valleys and lakes; The measurements of bare lands were conducted on the desert, Gobi and roads, which have no vegetation cover. The measurement conducted from July to August in 2019, and the data is daily observation data. The data set can provide a reference for the field verification of remote sensing interpretation.

0 2022-04-18

Impervious surface product of Qinghai-Tibet Plateau with 10m resolution (2018)

Data content: The data set products include impervious surface products with a resolution of 10 meters in the Qinghai-Tibet Plateau, which can be used as a key parameter for related research on the Qinghai-Tibet Plateau ecosystem. Data source and processing method: Product inversion is mainly based on Sentinel series data, considering joint features, combining depth spatial features, long-time NDVI and other exponential features, and topographic features, and using random forest model to achieve impervious surface information extraction. Data quality: The overall accuracy is high. Data application results and prospects: The data set will be continuously updated and can be used to further clarify the impact of human activities on the ecosystem of the Qinghai-Tibet Plateau.

0 2022-04-18

DOM data of Jiuzhaigou Xifan gully debris flow (2019-2021)

This data is DOM data of Jiuzhaigou Xifan gully debris flow; The Pegasus V10 UAV is equipped with RIEGL vux-1lr airborne lidar system. The coaxial optical image is processed by pix4d mapper, and the Orthophoto Image is made; The resolution of orthophoto map is 0.2m, and the coordinate system is CGCS2000 national coordinate system and 1985 National elevation datum; Carry out debris flow provenance identification and calculation based on airborne lidar data and optical image data. According to the location of the provenance and the color and texture differences on the mountain shadow image, the provenance is divided into landslide provenance, slope provenance and gully provenance, and establish airborne lidar identification marks and remote sensing interpretation methods for various types of provenance, It provides theoretical reference and data support for the accurate calculation of debris flow provenance, and further serves the prevention and risk assessment of debris flow.

0 2022-02-15