Daily 0.05°×0.05° Land Surface Soil Moisture Dataset of Qilian Mountain Area (2018,SMHiRes, V1)

This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2018. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “AMSR-E and AMSR2 TB-based SMAP Time-Expanded Daily 0.25°×0.25° Land Surface Soil Moisture Dataset in Qilian Mountain Area (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou and Lat/Lon information.

0 2020-07-10

snow pit data in Altay (2015/2016)

Snow pits were observed daily at Altay base station(lon:88.07、lat: 44.73) from November 27, 2015 to March 26, 2016. Parameters include: snow stratification, stratification thickness, density, particle size, temperature. The frequency of observation was daily. The particle size was observed by a microscope with camera, the density was observed by snowfork, snow shovel and Snow Cone, and the temperature was automatically observed by temperature sensor. The observation time was 8:00-10:100 am local time. The snow particle size is observed according to the natural stratification of snow. The snow particles of each layer are collected, and at least 2 photos are taken. The long axis and short axis of at least 10 groups of particles are measured by corresponding software. Unit: mm. The density was observed at equal intervals, snowfork every 5 cm, snow shovel every 10 cm, snow cone to observe the density of the whole snow layer, and the density of each layer was observed three times. The unit is g / cm3. The height of temperature observation is 0cm, 5cm, 10cm, 15cm, 25cm, 35cm, 45cm, 55cm. The recording frequency was once every 1 minute. The unit is OC.

0 2020-07-06

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (eddy covariance system of the Subalpine shrub, 2019)

This dataset contains the flux measurements from the Subalpine shrub eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from April 28 to December 31 in 2019. The site (100°6'3.62"E, 37°31'15.67" N ) was located near Dasi, Shaliuhe Town, Gangcha County, Qinghai Province. The elevation is 3495m. The EC was installed at a height of 2.5m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: DATE/TIME, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). The quality marks of sensible heat flux, latent heat flux and carbon flux are divided into three levels (quality marks 0 have good data quality, 1 have good data quality and 2 have poor data quality). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.

0 2020-06-30

An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018

Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).

0 2020-06-23

HiWATER: Dataset of fractional vegetation cover over the midstream of Heihe River Basin (2012.05.25-09.14)

This dataset is the Fractional Vegetation Cover observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observations lasted for a vegetation growth cycle from May 2012 to September 2012 (UTC+8). Instruments and measurement method: Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. Details are described in the following: 0. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 1. For row crop like corn, the plot is set to be 10×10 m2, and for the orchard, plot scale is 30×30 m2. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values. 2. The photographic method used depends on the species of vegetation and planting pattern: Low crops (<2 m) in rows in a situation with a small field of view (<30 ), rows of more than two cycles should be included in the field of view, and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. 3. High vegetation in rows (>2 m) Through the top-down photography of the low vegetation underneath the crown and the bottom-up photography beneath the tree crown, the FVC within the crown projection area can be obtained by weighting the FVC obtained from the two images. Next, the low vegetation between the trees is photographed, and the FVC that does not lie within the crown projection area is calculated. Finally, the average area of the tree crown is obtained using the tree crown projection method. The ratio of the crown projection area to the area outside the projection is calculated based on row spacing, and the FVC of the quadrat is obtained by weighting. 4. FVC extraction from the classification of digital images. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation.

0 2020-06-19

MODIS multi-spectral remote sensing images dataset of 15 key node regions of Pan third pole (2000-2016)

The MODIS Terra MOD09A1 Version 6 product provides an estimate of the surface spectral reflectance of Terra MODIS Bands 1 through 7 corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering. Along with the seven 500 m reflectance bands is a quality layer and four observation bands. For each pixel, a value is selected from all the acquisitions within the 8-day composite period. The criteria for the pixel choice include cloud and solar zenith. When several acquisitions meet the criteria the pixel with the minimum channel 3 (blue) value is used.Based on MCD12Q1 data from 2001 to 2016, MatLab was used to tailor the masks of 18 key nodes in Southeast Asia and middle East. Finally. This dataset is based on the data of MOD09A1 V6 synthesized in 8 days from 2001 to 2016 downloaded by the National Aeronautics and Space Administration (NASA). The spatial resolution is 500 meters, and MatLab is used to mask cut the data in the research area, and Finally, the land cover data of 18 key nodes from 2001 to 2016 were obtained.. The 18 key regions covered by the data mainly include: Bangkok, Port of Myanmar, Chittagong, Colombo, Dhaka, Gwadar, Hambantot, Huangjing and Malacca, Kwantan, Maldives, Mandalay, Sihanouk, Vientiane, Yangon, etc.).

0 2020-06-18

high temperature heat wave risk dataset at 34 key nodes of the third pole (2015)

Apparent temperature refers to the degree of heat and cold that the human body feels, which is affected by temperature, wind speed and humidity. The spatial scope of the data covers 34 key nodes in the pan-third pole region (Vientiane, Yangon, Kolkata, Warsaw, Karachi, Yekaterinburg, Chittagong, Tashkent, etc.). The spatial resolution is 100m, and the temporal resolution is year. Processing process: Based on the monitoring data of the meteorological station, calculate the apperant temperature based on the Humidex index, and then use the temperature correction method based on elevation correction to obtain 1km gridded data of the entire area, and downscale it to 100m. The heat wave risk dataset mainly uses intensity as the evaluation index. The spatial range and spatial resolution are consistent with the somatosensory temperature data set, and the temporal resolution is years. The criterion for judging the heat wave is: the weather process in which the somatosensory temperature exceeds 29℃ for three consecutive days is judged to be a high-temperature heat wave.

0 2020-06-18

34 key nodes of Pan third pole historical extreme precipitation dataset (2000-2018)

The pan third pole historical extreme precipitation data set includes 2000-2018 extreme precipitation identification data. One belt, one road, was used to assess the rainfall in the important area along the GPM IMERG Final Run (GPM) daily rainfall. The extreme precipitation threshold of 34 important nodes was evaluated by percentile method. The daily precipitation period was identified by the calculated threshold, and the surface inundation area was produced on the basis of extreme precipitation. The data range mainly includes 34 key nodes of Pan third pole (Vientiane, Alexandria, Yangon, Calcutta, Warsaw, Karachi, yekajerinburg, Chittagong, Djibouti, etc.) The data set can provide the basis for local government decision-making, so as to correctly identify extreme precipitation and reduce the loss of life and property caused by extreme precipitation.

0 2020-06-18

Dataset of surface inundation caused by historical extreme precipitation for The 34 critical nodes of the pan third pole (2014-2018)

Data set of surface inundation caused by historical extreme precipitation evaluated the surface inundation range of One Belt And One Road key areas under extreme precipitation, providing a basis and reference for the decision-making of local government departments, so as to give early warning before the occurrence of extreme precipitation and reduce the loss of life and property caused by extreme precipitation.This data set to the extreme precipitation threshold set "and" the extreme precipitation recognition "as the foundation, to confirm the extreme precipitation time node and the area, and then to NASA's web site to download the submerged range products corresponding to the time and region, combining ArcGIS spatial analysis was used to connect the above data, build the data sets of historical extreme precipitation caused surface submerged range for 34 key nodes. The data mainly includes 34 key nodes (Vientiane, China-Myanmar oil and gas pipeline, China-Laos Thai-Cambodia railway, Alexandria, Yangon, Kwantan, Kolkata, Warsaw, Karachi, Yekaterinburg, Yekaterinburg and other regions).

0 2020-06-17

Landsat-based continuous monthly 30m×30m Land Surface NPP dataset in Qilian mountainous area (2019)

This data set includes the monthly synthesis of 30 m × 30 m surface NPP products in the Qilian Mountain Area in 2019. The maximum value composition (MVC) method is used to synthesize the monthly NDVI products on the earth's surface and calculate NPP by using the reflectance data of Landsat 8 and sentinel 2 red and near infrared channels. The data is monthly synthesized by Google Earth engine cloud platform, and the index is calculated by the model. The missing pixels are interpolated with good quality, which can be used in environmental change monitoring and other fields.

0 2020-06-16