Meteorological data of the integrated observation and research station of Ngari for desert environment (2009-2017)

The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.

0 2020-01-13

Meteorological observation data from the integrated observation and research station of the alpine environment in Southeast Tibet (2007-2017)

This data set includes daily average data of atmospheric temperature, relative humidity, precipitation, wind speed, wind direction, net radiance, and atmospheric pressure from 1 January 2007 to 31 December 2016 derived from the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set has been used by students and researchers in the fields of meteorology, atmospheric environment and ecological research. The units of the various meteorological elements are as follows: temperature °C; precipitation mm; relative humidity %; wind speed m/s; wind direction °; net radiance W/m2; pressure hPa; and particulate matter with aerodynamic diameter less than 2.5 μm μg/m3. All the data are the daily averages calculated from the raw observations. Observations and data collection were carried out in strict accordance with the instrument operating specifications and the guidelines published in relevant academic journals; data with obvious errors were eliminated during processing, and null values were used to represent the missing data. In 2015, due to issues related to the age of the observation probe at the station, only the wind speed data for the last 8 months were retained.

0 2020-01-10

China meteorological forcing dataset (1979-2018)

The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.

0 2019-11-19

Meteorological observation data of Selincuo Lake camp (2017)

This is the meteorological observation data of Selincuo Lake Camp. It includes the radiosonde data, turbulent flux, radiation observation data, general meteorologrical elements near the surface layer and others. The radiosonde data is observed separately at 14:00 and 18:00 July 2, at 8:00, 12:00, 16:00 and 20:00 July 3, at 8:00, 12:00, 16:00, 20:00, and 23:00 July 4, at 6:00 July 5, 2017. The observation time of turbulent flux and radiation observation data is from 17:30 June 29 to 10:00 July 6, 2017. The observation time of general meteorologrical elements near the surface layer is from 18:30 June 29 to 10:10 July 6, 2017. The wind lidar observation time is from 2:24 June 30 to 3:49 July 6, 2017. The data is stored as an excel file.

0 2019-11-18

Meteorological observation data of Kongque River Source (2012-2017)

This data set includes the temperature, precipitation, relative humidity, wind speed, wind direction and other daily values in the observation point of Kongque River Source. The data is observed from July 2, 2012 to September 15, 2017. It is measured by automatic meteorological station (Onset Company) and a piece of data is recorded every 2 hours. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure.

0 2019-11-18

Meteorological observation dataset of Shiquan River Source (2012-2015)

This dataset includes the temperature, precipitation, relative humidity, wind speed, wind direction and other daily values in the observation point of Shiquan River Source. The data is observed from July 2, 2012 to August 5, 2014, and from September 30, 2015 to December 25, 2015. It is measured by automatic meteorological station (Onset Company) and a piece of data is recorded every 2 hours. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.

0 2019-11-17

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of meteorological elements gradient of Alpine meadow and grassland ecosystem superstation, 2018)

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from August 31 to December 24, 2018. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

0 2019-09-15

WATER: Dataset of CMA operational meteorological stations observations in the Heihe River Basin

The dataset of CMA operational meteorological stations observations in the Heihe river basin were provided by Gansu Meteorological Administration and Qinghai Meteorological Administration. It included: (1) Diurnal precipitation, sunshine, evaporation, the wind speed, the air temperature and air humidity (2, 8, 14 and 20 o'clock) in Mazongshan, Yumen touwnship, Dingxin, Jinta, Jiuquan, Gaotai, Linze, Sunan, Zhangye, Mingle, Shandan and Yongchang in Gansu province (2) the wind direction and speed, the temperature and the dew-point spread (8 and 20 o'clock; 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 and 50hpa) in Jiuquan, Zhangye and Mingqin in Gansu province and Golmud, Doulan and Xining in Qinghai province (3) the surface temperature, the dew point, the air pressure, the voltage transformation (3 hours and 24 hours), the weather phenomena (the present and the past), variable temperatures, visibility, cloudage, the wind direction and speed, precipitation within six hours and unusual weather in Jiuquan, Sunan, Jinta, Dingxin, Mingle, Zhangye, Gaotai, Shandan, Linze, Yongchang and Mingqin in Gansu province and Tuole, Yeniugao, Qilian, Menyuan, Xining, Gangcha and Huangyuan in Qinhai province.

0 2019-09-15

Observational farmland ecosystem data in Lhasa on the Tibetan Plateau (2006-2009)

This data set includes the biomass and photosynthesis observational data of the highland spring barley experimental plot at the Lhasa Farm Experimental Station and the meteorological data observationally obtained at the Damxung Grass Experimental Station. The time range is 2006-2009. Biomass observation method: The sampling area of each sample is 25 cm*25 cm. Photosynthetic data observation: The instrument is a LiCor-6400. The biomass data are manually entered according to the record book. The photosynthetic data are automatically recorded by the instrument. The average wind speed, prevailing wind direction, temperature, atmospheric pressure and relative humidity in the daily values of meteorological data are averaged over half-hour data. The precipitation and total radiation data are automatically recorded by the observation system. The observation process of biomass data is in strict accordance with the agronomic method, and it can be applied to the estimation of agricultural productivity. In the process of photosynthetic data observation, the operation of the instrument and the selection of the observation object are strictly in accordance with professional requirements and can be used in photosynthetic parameter simulations estimating plant leaf and productivity. The Tibetan Plateau farmland ecosystem observation data includes: 1) aboveground biomass; 2) CO2 response photosynthetic data; 3) light-response photosynthetic data; and 4) daily meteorological data in Damxung Monitoring Point. Data collection locations: Lhasa Agricultural Ecology Experimental Station, Chinese Academy of Sciences, Longitude: 91°20’, Latitude: 29°41’, Altitude: 3688 m and Damxung Alpine Meadow Carbon Flux Observation Station, Longitude: 91°05′, Latitude: 30°25′, Altitude: 4333 m.

0 2019-09-15