Geographical distribution of major ecological projects on the Tibetan Plateau

Geographical distribution of major ecological protection and construction projects on the Tibetan plateau. There are four main projects, i.e. forest protection and construction project, grassland protection and construction project, desertification control project, soil erosion comprehensive control project. Processing method: classified summary, and the county as a unit of the regional distribution.

0 2020-06-01

Data of soil organic matter in Qinghai-Tibet Plateau (1979-1985)

The data include soil organic matter data of Tibetan Plateau , with a spatial resolution of 1km*1km and a time coverage of 1979-1985.The data source is the soil carbon content generated from the second soil census data.Soil organic matter mainly comes from plants, animals and microbial residues, among which higher plants are the main sources.The organisms that first appeared in the parent material of primitive soils were microorganisms.With the evolution of organisms and the development of soil forming process, animal and plant residues and their secretions become the basic sources of soil organic matter.The data is of great significance for analyzing the ecological environment of Tibetan Plateau

0 2020-05-30

Night light data on the Tibetan Plateau (2000, 2005, 2010)

The data include the night light data of Tibetan Plateau with a spatial resolution of 1km*1km, a temporal resolution of 5 years and a time coverage of 2000, 2005 and 2010.The data came from Version 4 dmsp-ols products. DMSP/OLS sensors took a unique approach to collect radiation signals generated by night lights and firelight.DMSP/OLS sensors, working at night, can detect low-intensity lights emitted by urban lights, even small-scale residential areas and traffic flows, and distinguish them from dark rural backgrounds.Therefore, DMSP/OLS nighttime light images can be used as a representation of human activities and become a good data source for human activity monitoring and research.

0 2020-05-30

Black carbon dataset of ice cores over the Tibetan Plateau (1950-2006)

As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. By drilling and sampling ice cores and snow samples and measuring BC concentration, historical record and spatial distribution can be abtained. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.

0 2020-05-30

SRTM DEM data on the Tibetan Plateau (2012)

This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.

0 2020-05-29

County level statistics data of Tibetan Plateau (1980-2015)

The data set contains agricultural economic data of all counties and regions in the Tibetan Plateau in 1980-2015, and covering the total number of households and total population in rural areas, agricultural population, rural labor force, cultivated land, paddy field area, the dry land area, power of agricultural machinery, agricultural vehicles, mechanical ploughing area, irrigation area, consumption of chemical fertilizers electricity use, gross output value of agriculture, forestry, animal husbandry and fishery, the output of cattle, pig, sheep, meat, poultry, and fish, the sown area of grain, the output of grain, cotton, oil and all kinds of crops, and characteristic agricultural products and livestock production and other relevant data.The data came from the statistical yearbook of the provinces included in the Tibetan Plateau.The data are of good quality and can be used to analyze the socio-economic and agricultural development of qinghai-tibet plateau.

0 2020-05-29

Aerial data of the Tibetan Plateau (2018)

The data set was acquired by uav aerial photography during the field investigation on the Tibetan Plateau in 2018. The data size was 5.72 GB, including more than 800 photos.The photo was taken from July 19, 2008 to July 26, 2008. The shooting locations mainly include yambajing, keshi village, apaixin village, zhongguo village, mirin village, ri village, chongkang village, kesong village, semi village, yamzhuo yoncho and the surrounding areas.Aerial photos more clearly reflect the local land cover, land use type distribution density, rivers and lakes, vegetation, etc.), work for land use remote sensing provides better validation information, can also be used for the estimation of vegetation coverage, for the study of land use in the study area provided a good reference information.

0 2020-05-29

Grading map of agricultural suitability on the Tibet Plateau

This study takes the land resources in the Qinghai-Tibet Plateau as the evaluation object, and clarifies the current situation in the region suitable for agriculture, forestry, animal husbandry production and the quantity, quality and distribution of the reserve land resources. Through field investigations, collect relevant data from the study area, and combine relevant literature and expert experience to determine the evaluation factors (altitude, slope, annual precipitation, accumulated temperature, sunshine hours, soil effective depth, texture, erosion, vegetation type, NDVI). The grading and standardization are carried out, and the weights of each evaluation factor are determined by principal component analysis. The weighted index and model are used to determine the total score of the evaluation unit. Finally, the ArcGis natural discontinuity classification method is used to obtain the Qingshang Plateau. And the grades of farmland, forestry and grassland suitability drawings of the Qinghai-Tibet Plateau with a resolution of 90m were given. Finally, the results are verified and analyzed.

0 2020-05-29

The map of fractional vegetation cover in the Yellow River source region of Tibet Plateau (2015)

This dataset is a pixel-based maximum fractional vegetation cover map within the Yellow River source region on the Qinghai-Tibet Plateau, with an area of about 44,000 square kilometers. Based on the time series images acquired from MODIS with a resolution of 250 m and Landsat-8 with a resolution of 30 m in 2015 during the vegetation growing season, the data are derived using dimidiate pixel model and time interpolation. The spatial resolution of the image is 30 m, using the WGS 1984 UTM projected coordinate system, and the data is in the format of grid.

0 2020-05-28

Provincal-level adminstrative units boundary of Qinghai-Tibet Plateau(2015)

This dataset is the boundary vector data of the provincial-level administrative units in the Qinghai-Tibet Plateau in 2015. The data is in the Shapefile format and includes provincial administrative units such as Tibet Autonomous Region, Qinghai Province, Gansu Province, Yunnan Province, Xinjiang Uygur Autonomous Region, and Sichuan Province. The administrative boundary within the plateau can be used for the geographical background research of the urbanization and ecological environment interaction stress of the Qinghai-Tibet Plateau. It is the basic geographic data for the statistics of the urbanization indicators of the provincial, forest, and population sectors of the Qinghai-Tibet Plateau. The data is obtained by means of data capture and collected through the administrative interface data acquisition API interface provided by the high-tech map. The data set uses the geographic coordinate system of WGS84.

0 2020-05-28