ASTER GDEM data in the Heihe River Basin (2009)

The data set includes ASTER GDEM data and its Mosaic. ASTER Global DEM (ASTER GDEM) is a Global digital elevation data product jointly released by NASA and Japan's ministry of economy, trade and industry (METI) on June 29, 2009. The DEM data is based on the observation results of NASA's new earth observation satellite TERRA.It is produced by the ASTER(Advanced Space borne Thermal Emission and Reflection Radio meter) sensor, which collects 1.3 million stereo image data, covering more than 99% of the earth's land surface.The data has a horizontal accuracy of 30 m (95% confidence) and an elevation accuracy of 7-14 m (95% confidence).This data is the third global elevation data, which is significantly higher than previous SRTM3 DEM and GTOPO30 data. We from NASA's web site (http://wist.echo.nasa.gov/api) to download the data of heihe river basin, and through the data center to distribute.The data distributed by the center completely retains the original appearance of the data without any modification to the data.If users need details about ASTER GDEM preparation process, please refer to the data documents of metadata connections, or visit http://www.ersdac.or.jp/GDEM/E/3.html or directly from https://lpdaac.usgs.gov/ reading and ASTER Global DEM related documents. ASTER GDEM is divided into several data blocks of 1×1 degree in distribution, and the distribution format is zip compression format. Each compressed file includes three files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif reademe.pdf Where xx is the starting latitude and yyy is the starting longitude._dem. Tif is the dem data file, _num. Tif is the data quality file, and reademe is the data description file. In order to facilitate users to use the data, on the basis of the fractional ASTER GDEM data, we splice fractional SRTM data to prepare the ASTER GDEM Mosaic map of the black river basin, which retains all the original features of ASTER GDEM without any resamulation. This data includes two files: heihe_aster_gdem_mosaic_dem.img Heihe_Aster_GDEM_Mosaic_num. Img The data is stored in the format of Erdas image, where the file _dem.img is the dem data file and the file _num. Img is the data quality file.

0 2020-06-08

The population dataset of the Heihe River Basin (2000-2009)

This set of data mainly includes the demographic data of 12 counties in 6 prefecture-level cities of Qinghai, Gansu and Inner Mongolia in Heihe River Basin, covering the time period of 2000-2009. The data source is the local statistical yearbook, which mainly includes: Statistical Bureau of Suzhou District. Statistical Yearbook of Suzhou. 2004-2009; Yumen Statistical Bureau. Yumen Statistical Yearbook. 2000-2008; Jinta County Statistical Bureau. Jinta County Statistical Yearbook. 2004-2009; Gaotai Statistical Bureau. Gaotai Statistical Yearbook. 2000-2007; Shandan County Statistical Bureau. Shandan County Statistical Yearbook. 2000-2009; Sunan Yugur Statistical Bureau. Statistical Yearbook of Sunan Yugur Autonomous County. 2004-2009; Minle County Statistical Bureau. Minle County Statistical Yearbook. 2004-2009; Shandan County Statistical Bureau. Shandan County Statistical Yearbook. 2000-2009; Linze County Statistical Bureau. Linze County Statistical Yearbook. 2000-2009; Ejin Banner Statistical Bureau. Ejin Banner Statistical Yearbook. 1990-2005; Qilian County Statistical Bureau. Qilian County National Economic Statistics. 2004-2009; Part of the data of Zhangye City comes from the basic social and economic situation of townships of Zhangye City in 2005. Data of Jiayuguan City is derived from the CNKI statistical data database of China National Knowledge Infrastructure, and only contains some county-level data. Data Content Description: The data mainly includes three population indicators of 12 counties in the basin, including Ganzhou District, Gaotai County, Shandan County, Minle County, Linze County, Sunan Yugur Autonomous County, Jinta County, Sunzhou District and Yumen City, Jiayuguan City, Qilian County, and Ejin Banner. The population indicators are permanent population, agricultural population and non-agricultural population at the end of the year. It is divided into two levels: county level and township level. The statistics currently available are: County level: Ejina Banner: 2006-2009: resident population, agricultural population, non-agricultural population at the end of each year Ganzhou District: 2009: agricultural population, non-agricultural population of the year; Gaotai County: 2009: agricultural population, non-agricultural population of the year; Sunan: 2000-2009: permanent population, agricultural population, non-agricultural population at the end of each year; Minle County: 2009: permanent population, agricultural population, non-agricultural population at the end of the year; Linze: 2009: permanent population, agricultural population, non-agricultural population at the end of the year; Yumen City: 2000-2005: permanent population, agricultural population, non-agricultural population at the end of each year; Township level: Ejin Banner: 2000-2005: permanent population, agricultural population, non-agricultural population at the end of the year; Ganzhou District: 2000-2008: permanent population, agricultural population, non-agricultural population at the end of the year; 2009: resident population at the end of the year; Gaotai County: 2000-2004, 2006, 2007: permanent population, agricultural population, non-agricultural population at the end of the year; 2009: resident population at the end of the year; Shandan County: 2000-2007: permanent population, agricultural population, non-agricultural population at the end of the year; 2009: resident population at the end of the year; Minle County: 2000-2008: permanent population, agricultural population, non-agricultural population at the end of the year; Jinta County: 2004-2009: permanent population, agricultural population, non-agricultural population at the end of the year; Yumen City: 2006-2008: permanent population, agricultural population, non-agricultural population at the end of the year; Suzhou District 2004-2009: permanent population, agricultural population, non-agricultural population at the end of the year; Qilian County: 2004-2009: permanent population, agricultural population, non-agricultural population at the end of the year; Permanent population at the end of the year, agricultural population, non-agricultural population County level township level county level township level county level township level Ejin Banner:2006-2009 2000-2005 2006-2009 2000-2005 2006-2009 2000-2005 Ganzhou District 2000-2009 2009 2000-2008 2009 2000-2008 Gaotai County 2000-2004、 2006、2007、2009 2009 2000-2004、 2006、2007 2009 2000-2004、 2006、2007 Shandan County 2000-2007、2009 2000-2007 2000-2007 Sunan County 2000-2009 2000-2009 2000-2009 Minle County 2009 2000-2008 2009 2000-2008 2009 2000-2008 Linze County 2009 2009 2009 Jinta County 2004-2009 2004-2009 2004-2009 Sunzhou District 2004-2009 2004-2009 2004-2009 Qilian County 2004-2009 2004-2009 2004-2009 Yumen City 2000-2005 2006-2008 2000-2005 2006-2008 2000-2005 2006-2008

0 2020-06-08

The HWSD soil texture dataset of the Shulehe River Basin (2009)

The data set is the HWSD soil texture dataset of the Shulehe River Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, 2009. The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (soil name in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification of obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of cohesive layer soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009). The data can provide model input parameters for modelers of the Earth system, and the agricultural perspective can be used to study eco-agricultural zoning, food security, and climate change.

0 2020-06-08

The HWSD soil texture dataset of the Qinghai Lake Basin (2009)

The dataset is the HWSD soil texture dataset of the Qinghai Lake Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (soil name in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification of obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of cohesive layer soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009). The data can provide model input parameters for modelers of the Earth system, and the agricultural perspective can be used to study eco-agricultural zoning, food security, and climate change.

0 2020-06-08

iver network dataset of the Heihe River Basin (2009)

Data overview: This set of data mainly includes perennial River, seasonal river, river trunk, surface main channel, surface branch channel and other water system conditions in the Heihe River Basin. The data base year is 2009. Data preparation process: obtained from 1:100000 topographic map and 2009 TM remote sensing image digitization. Data content description: the data mainly has three important attributes, namely, grade, GB and name. The river classification is based on the Strahler classification method, and the final level of the main stream reaches seven levels. River coding is based on the national basic geographic information element dictionary. The standard of basic geographic information element data dictionary is adopted.

0 2020-06-05

The HWSD soil texture dataset of the North_Slope_of_Tianshan River Basin (2009)

The dataset is the HWSD soil texture dataset in the north slope of the Tianshan River Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, 2009. The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (soil name in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification of obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of cohesive layer soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009). The data can provide model input parameters for modelers of the Earth system, and the agricultural perspective can be used to study eco-agricultural zoning, food security, and climate change.

0 2020-06-01

Vector map of 1:4 million rivers in the upper reaches of the Yellow River (2009)

I. Overview The Yellow River is the second longest river in our country. The problem of the Yellow River's sediment has attracted the attention of people all over the world. Based on the vector map of the 14 million rivers in China as a base map, the upper reaches of the Yellow River basin were cut out. The vector map of the river is a key element for extracting the boundary of the basin by using the topographic map, and it is also a key element for flood evolution and sediment evolution. Ⅱ. Data processing description Using the national vector map of the 14 million rivers as the data source, it is cut out by using the boundary of the upper reaches of the Yellow River. Ⅲ. Data content description The map is stored in ArcGIS, .shp files, including vector diagrams of the main and tributaries from the source area of the Yellow River to Toudaoguai. Ⅳ. Data usage description The vector map of the river is a key element for extracting the boundary of the watershed by using the topographic map, and it is also a key element for flood evolution and sediment evolution.

0 2020-06-01

The second glacier inventory dataset of Ganges Rivers, China (Version 1.0) (2009)

The study uses Landsat TM/ETM+, Terra ASTER and other optical remote sensing data before and after 2009. After plane correction and orthorectification, the glacier analysis information of western China in 2009 was extracted by automatic extraction and expert intervention revision methods, and was verified by field glacier investigation team. This dataset is the second glacier inventory dataset of the Ganges river basin in China (2009) (v1.0), and contains the following attributes: glacier name, first-level watershed inventory, second-level watershed code, third-level watershed code, GLIMS name, glacier coordinates, glacier elevation, highest elevation, lowest elevation, glacier area, glacier perimeter, glacier height zone distribution, glacier uncertainty information, etc.

0 2020-04-06

The second glacier inventory dataset of Pamirs , China (Version 1.0) (2009)

The study uses Landsat TM/ETM+, Terra ASTER and other optical remote sensing data before and after 2009. After plane correction and orthorectification, the glacier analysis information of western China in 2009 was extracted by automatic extraction and expert intervention revision methods, and was verified by field glacier investigation team. This dataset is the second glacier inventory dataset of Pamirs in China. it contains the following attributes: glacier name, first-level watershed inventory, second-level watershed coding, third-level watershed coding, GLIMS name, glacier coordinates, glacier elevation, highest elevation, lowest elevation, glacier area, glacier perimeter, glacier height zone distribution, glacier uncertainty information, etc.

0 2020-04-06

The HWSD soil texture dataset of the Heihe River Basin (2009)

The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and International Institute for Applied System Analysis in Vienna (IIASA), which released version 1.1 on March 26, 2009. The data resolution is 1 km. The data source in China is 1: 1 million soil data. The soil classification system used is mainly FAO-90. The main fields of the soil property sheet include: SU_SYM90 (name of soil in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification to the bottom of the soil with obstacles); SWR: String (characteristics of soil water content); ADD_PROP: Real (specific soil type in the soil unit related to agricultural use); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA Soil Texture Classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of the sticky layer soil); T_CEC_SOIL: Real (soil cation exchange capacity) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field at the beginning of T_ indicates the upper soil attribute (0-30 cm), and the attribute field at the beginning of S_ indicates the lower layer soil attribute (30-100 cm) (FAO 2009). This data provides model input parameters for Earth system modelers, and in agricultural perspective, it can be used to study eco-agricultural divisions, food security, and climate change.

0 2020-03-31