Tarim River Basin boundary dataset (2000)

The data is the boundary distribution map of the Tarim River Basin with a scale of 250,000. Projection: latitude and longitude. This data include spatial data and attribute data of the Tarim River Basin sub-watershed. The attribute data fields are: Area (area), Perimeter (perimeter), WRRNM (watershed name), WRRCD ( watershed coding)

0 2020-03-31

The resident site distribution data of the Tarim River Basin (2000)

The data is the distribution data of the settlements in the Tarim River Basin, mainly including the distribution of cities, counties, towns, and villages in the Tarim River Basin. The data mainly has two attribute fields: Code (settlement code), Name (settlement name)

0 2020-03-31

1:250000 road distribution data set of Tarim river basin (2000)

Tarim River is the largest inland river in China, with a total length of 2179 kilometers. Tarim River Basin is one of the vulnerable areas of ecological environment in China. Due to the lack of coordination in material and energy matching, different regions show different vulnerability characteristics in macro. According to the relevant principles of ecological environment quality evaluation, combined with the ecological environment management of the Tarim River Basin. Data is road distribution data set of Tarim River Basin, scale: 250000, projection: longitude and latitude, mainly including spatial distribution and attribute data of main roads in Heihe River Basin, attribute fields: Code (road code), name (road classification) Collect and sort out the basic, meteorological, topographical and geomorphological data of the Tarim River Basin, and provide data support for the management of the Tarim River Basin.

0 2020-03-30

1:250000 railway distribution dataset of Tarim river basin (2000)

Tarim River is the largest inland river in China, with a total length of 2179 kilometers. Tarim River Basin is one of the vulnerable areas of ecological environment in China. Due to the lack of coordination in material and energy matching, different regions show different vulnerability characteristics in macro. According to the relevant principles of ecological environment quality evaluation, combined with the ecological environment management of the Tarim River Basin. The data is the railway distribution map of Tarim River Basin, with scale of 250000, including spatial data and attribute data, attribute field: Code (railway code) Collect and sort out the basic, meteorological, topographical and geomorphological data of the Tarim River Basin, and provide data support for the management of the Tarim River Basin.

0 2020-03-30

ASTER GDEM data in the Shulehe river basin (2000)

ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by National Aeronautics and Space Administration (NASA) and Japan's Ministry of Economy, Trade and Industry (METI) .The DEM data is based on the observation results of the new generation of Earth observation satellite TERRA Completed, it is produced by 1.3 million stereo pair data collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, and its coverage area exceeds 99% of the earth's land surface. The data has a horizontal accuracy of 30 meters (95% confidence) and an elevation accuracy of 20 meters (95% confidence). This data is the third global elevation data, which is a significant improvement over the previous SRTM3 DEM and GTOPO30 data. ASTER GDEM released two versions. The first version was released in June 2009 and the second version was released in October 2011. Compared with the first version, the second version has make further progress in water coverage and deviation removal. The quality of the data has been greatly improved. This dataset is the second version of the ASTER GDEM dataset in the Shule River Basin, including DEM, mountain shadow, slope, and aspect data. Spatial resolution: 1 radian second (about 30 meters), accuracy: vertical accuracy of 20 meters, horizontal accuracy of 30 meters.

0 2020-03-30

Distribution dataset of 1:250000 residential areas in Qinghai lake basin (2000)

Qinghai Lake is the largest inland salt water lake in China, which is located in the northeast of Qinghai Tibet Plateau. Its unique natural ecological environment and biodiversity are of great significance in the western development and ecological construction. The data is the distribution data of residential areas in the Qinghai Lake Basin, including the distribution of cities, counties, towns and villages in the Qaidam River Basin. The data mainly has two attribute fields: Code (residential area code) and name (residential area name). Collect and sort out the basic, meteorological, topographical and geomorphological data of Qinghai Lake Basin, and provide data support for ecological management of Qinghai Lake Basin.

0 2020-03-30

1:250000 administrative boundary distribution dataset Shule river basin (2000)

Shule River Basin is one of the three inland river basins in Hexi corridor. In recent years, with the obvious change of climate and the aggravation of human activities, the shortage of water resources and the problem of ecological environment in Shule River Basin have become increasingly prominent. It is of great significance to study the runoff change of Shule River Basin in the future climate situation for making rational water resources planning and ecological environment protection. The data set is the administrative boundary vector map of Shule River Basin, with a scale of 250000. The data includes spatial data and attribute data. The attribute fields are name (county boundary name) and code (administrative code). Collect and sort out the basic, meteorological, topographical and geomorphic data of Shule River Basin, and provide data support for the management of Shule River Basin.

0 2020-03-30

Basic datasets of the Tibetan highway in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of cryospheric data over China. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System selected three regions with different spatial scales as its main research areas to highlight the research focus. The research area along the Qinghai-Tibet highway is mainly about 700 kilometers long from Xidatan to Naqu, and 20 to 30 kilometers wide on both sides of the highway. The datasets of the Tibetan highway contains the following types of data: 1. Cryosphere data.Including: snow depth distribution. 2. Natural environment and resources.Include: Digital elevation topography (DEM) : elevation elevation, elevation zoning, slope and slope direction; Fundamental geology: Quatgeo 3. Boreholes: drilling data of 200 boreholes along the qinghai-tibet highway. Engineering geological profile (CAD) : lithologic distribution, water content, grain fraction data, etc 4. Model of glacier mass equilibrium distribution along qinghai-tibet highway: prediction of frozen soil grid data. The graphic data along the qinghai-tibet highway includes 13 map scales of 1:250,000.The grid size is 100×100m. For details, please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc", "Chinese Cryospheric Information System data dictionary. Doc", "Database of the Tibetan highway. Doc".

0 2020-03-30

1:1 million wetland data of Shanxi Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-03-29

The mechanism of vegetation degradation in Yuanjiang dry hot valley of Yunnan Province

The experimental project of vegetation degradation mechanism and reconstruction in Yuanjiang dry-hot valley in Yunnan belongs to the major research program of "Environmental and Ecological Science in Western China" of the National Natural Science Foundation. The principal is researcher Cao Kunfang of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. The project runs from January 2004 to December 2007. Data collected for this project include: 1. Excel table of multi-year average temperature and rainfall in Yuanjiang dry-hot valley (1961-2004), with attribute fields including monthly average temperature and monthly average rainfall. 2. excel table of annual average temperature (1750-2006) in the middle of Hengduan Mountain in China based on tree ring, with attribute fields including year and reconstructed average temperature. 3. excel table of summer temperatures (1750-2006) in the central Hengduan Mountains in southern China based on tree rings. The attribute fields include the year and the reconstructed average temperature in summer (April-September). 4. excel table of drought index (1655-2005) in central Hengduan Mountains of China based on tree rotation, with attribute fields including year and reconstruction of drought index in spring (March-May). 5. pdf file of growth dynamic graph of leaves and branches. it records the growth dynamic trend line and leaf dynamic trend graph of plants with s-type, f-type, intermediate-type and S+SD-type branches from March 22, 2004 to April 8, 2005. 6.32 Phenological Summary Tables of Woody Plants (word Document: Specific Name, Number of Observed Plants/Branches, Type of Branch Extension, Leaf Phenology, Length of Current Year Branches (cm), Total Leaves on Branches, Leaf Area (cm2), Non-leaf Period (Months), Flowering Period, Fruit Ripening Period and Fruit Type) 7. Seasonal Changes of Relative Water Content of Plant Leaves in Yuanjiang Dry-hot Valley (March 2003-February 2004) Excel Table 8. Seasonal Changes of Photosynthesis of 6 Representative Plants in Yuanjiang Dry-hot Valley (Maximum Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency, Maximum Subefficiency of photosystem II) excle Table (2003-2005) 9. excle Table of Long-term Water Use Efficiency (Isotope) Data of Representative Plants in Yuanjiang Dry-hot Valley (Water Use Efficiency in Dry and Wet Seasons of Shrimp Flower, Red-skin Water Brocade Tree, Three-leaf Lacquer, Phyllanthus emblica, Pearl Tree, Dried Sky Fruit, Cyclobalanopsis glauca, West China Small Stone Accumulation, Geranium, Tiger thorn, Willow and Pigexcrement Bean) 10. word Document of List of Plants in Mandan Qianshan, Yuanjiang

0 2020-03-29