Basic datasets of the Tibetan highway in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of cryospheric data over China. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System selected three regions with different spatial scales as its main research areas to highlight the research focus. The research area along the Qinghai-Tibet highway is mainly about 700 kilometers long from Xidatan to Naqu, and 20 to 30 kilometers wide on both sides of the highway. The datasets of the Tibetan highway contains the following types of data: 1. Cryosphere data.Including: snow depth distribution. 2. Natural environment and resources.Include: Digital elevation topography (DEM) : elevation elevation, elevation zoning, slope and slope direction; Fundamental geology: Quatgeo 3. Boreholes: drilling data of 200 boreholes along the qinghai-tibet highway. Engineering geological profile (CAD) : lithologic distribution, water content, grain fraction data, etc 4. Model of glacier mass equilibrium distribution along qinghai-tibet highway: prediction of frozen soil grid data. The graphic data along the qinghai-tibet highway includes 13 map scales of 1:250,000.The grid size is 100×100m. For details, please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc", "Chinese Cryospheric Information System data dictionary. Doc", "Database of the Tibetan highway. Doc".

0 2020-06-23

China long-sequence surface freeze-thaw dataset——decision tree algorithm (1987-2009)

China long-sequence surface freeze-thaw dataset——decision tree algorithm (1987-2009), is derived from the decision tree classification using passive microwave remote sensing SSM / I brightness temperature data. This data set uses the EASE-Grid projection method (equal cut cylindrical projection, standard latitude is ± 30 °), with a spatial resolution of 25.067525km, and provides daily classification results of the surface freeze-thaw state of the main part of mainland China. The data set is stored by year and consists of 23 folders, from 1987 to 2009. Each folder contains the day-to-day surface freeze-thaw classification results for the current year. It is an ASCII file with the naming rule: SSMI-frozenYYYY ***. Txt, where YYYY represents the year and *** represents the Julian date (001 ~ 365 / 366). The freeze-thaw classification result txt file can be opened and viewed directly with a text program, and can also be opened with ArcView + Spatial Analyst extension module or Arcinfo's Asciigrid command. The original frozen and thawed surface data was derived from daily passive microwave data processed by the National Snow and Ice Data Center (NSIDC) since 1987. This data set uses EASE-Grid (equivalent area expandable earth grid) as a standard format . China's surface freeze-thaw long-term sequence data set-The decision tree algorithm (1987-2009) attributes consist of the spatial-temporal resolution, projection information, and data format of the data set. Spatio-temporal resolution: the time resolution is day by day, the spatial resolution is 25.067525km, the longitude range is 60 ° ~ 140 ° E, and the latitude is 15 ° ~ 55 ° N. Projection information: Global equal-area cylindrical EASE-Grid projection. For more information about EASE-Grid projection, see the description of this projection in data preparation. Data format: The data set consists of 23 folders from 1987 to 2009. Each folder contains the results of the day-to-day surface freeze-thaw classification of the year, and is stored as a txt file on a daily basis. File naming rules: For example, SMI-frozen1994001.txt represents the surface freeze-thaw classification results on the first day of 1994. The ASCII file of the data set is composed of a header file and a body content. The header file consists of 6 lines of description information such as the number of rows, the number of columns, the coordinates of the lower left point of the x-axis, the coordinates of the lower left point of the y-axis, the grid size, and the value of the data-less area. Array, with columns as the priority. The values ​​are integers, from 1 to 4, 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. Because the space described by all ASCII files in this data set is nationwide, the header files of these files are unchanged. The header files are extracted as follows (where xllcenter, yllcenter and cellsize are in m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 All ASCII files in this data set can be opened directly with a text program such as Notepad. Except for the header file, the main content is a numerical representation of the surface freeze-thaw state: 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. If you want to display it with an icon, we recommend using ArcView + 3D or Spatial Analyst extension module to read it. During the reading process, a grid format file will be generated. The displayed grid file is the graphic representation of the ASCII code file. Reading method:  [1] Add 3D or Spatial Analyst extension module in ArcView software, and then create a new View;  [2] Activate View, click the File menu, select the Import Data Source option, the Import Data Source selection box pops up, select ASCII Raster in Select import file type: in this box, and a dialog box for selecting the source ASCII file automatically pops up Find any ASCII file in the data set and press OK;  [3] Type the name of the Grid file in the Output Grid dialog box (a meaningful file name is recommended for later viewing), and click the path where the Grid file is stored, press Ok again, and then press Yes (to select an integer) Data), Yes (call the generated grid file into the current view). The generated file can be edited according to the Grid file standard. This completes the process of displaying the ASCII file as a Grid file.  [4] During batch processing, you can use ARCINFO's ASCIIGRID command to write an AML file, and then use the Run command to complete in the Grid module: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}

0 2020-06-09

The vegetation map at the 1:4,000,000 of China (1979)

This dataset: Editor-in-Chief: Hou Xueyu Drawing: Hou Xueyu, Sun Shizhou, Zhang Jingwei, He Miaoguang. Wang Yifeng, Kong Dezhen, Wang Shaoqing Publishing: Map Press Issue: Xinhua Bookstore Year: 1979 Scale: 1: 4,000,000 It took five years to complete from May 1972 to July 1976. In the process of drawing legends and mapping, referring to the vast majority of vegetation survey data (including maps and texts) after 1949 in China, we held more than a dozen mapping seminars involving researchers from inside and outside the institute. During the layout after the mapping work was completed, many new survey data were added, especially vegetation data in western Tibet. The nature of this map basically belongs to the current vegetation map, including two parts of natural vegetation and agricultural vegetation. The legend of natural vegetation is arranged according to the seven vegetation groups. They are mainly divided according to the appearance of plant communities and certain ecological characteristics. The concept of agricultural vegetation community, like the natural vegetation community, also has a certain life form (appearance, structure, layer), species composition and a certain ecological location. In 1990, the State Key Laboratory of Resources and Environmental Information Systems of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences completed the digitization of this map, and wrote relevant data description documents. The digitized data also adopt equal product cone projection and can be converted into other projections by GIS software. This data includes a vector file in e00 format, a Chinese vegetation coding design description, a dataset description, a vegetation data layer attribute data table, and a scanned "People's Republic of China Vegetation Map-Brief Description" and other files. Data projection: Projection: Albers false_easting: 0.000000 false_northing: 0.000000 central_meridian: 110.000000 standard_parallel_1: 25.000000 standard_parallel_2: 47.000000 latitude_of_origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Unknown Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Unknown Spheroid: Clarke_1866 Semimajor Axis: 6378206.400000000400000000 Semiminor Axis: 6356583.799999999800000000 Inverse Flattening: 294.978698213901000000

0 2020-06-09

The presert state map of landuse (Zhangye 1:500,000)

This data is digitized from the "Zhangye Land Use Status Map" of the drawing. This map is a key scientific and technological research project of the "Seventh Five-Year Plan" of the country: "Three North" Shelter Forest Remote Sensing Comprehensive Survey, and one of the series maps of Ganqingning Type Area. The information is as follows: * Chief Editor: Wang Yimou * Deputy Editors: Feng Yushun, You Xianxiang, Shen Yuancun * Editors: Wang Xian, Wang Jingquan, Qiu Mingxin, Quan Zhijie, Mou Xindai, Qu Chunning, Yao Fafen, Qian Tianjiu, Huang Autonomy, Mei Chengrui, Han Xichun, Li Yujiu, Hu Shuangxi * Responsible Editor: Huang Meihua * Manuscript: Mou Xin-shi, Cui Sai-hua, Wang Xian. He Shouhua * Compiling: He Shouhua, Wang Xian, Quan Zhijie, Cui Saihua, Long Yaping, Mu Xinshi, He Shouhua, Mao Xiaoli, Cui Saihua, Wang Changhan * Editors: Feng Yushun and Wang Yimou * Qing Hua: Feng Yushun, Zhang Jingqiu, Yang Ping * Cartography: Feng Yushun, Yao Fafen, Wang Jianhua, Zhao Yanhua, Li Weimin * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Xi 'an Map Publishing House * Scale: 1: 500000 * Publication time: not yet available 1. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Zhang Ye's landuse Map, River, Road, 2. Data Fields and Attributes Type number type face desert Paddy field 12 Irrigated field 13 dryland Non-irrigated field 131 Plain non-irrigated field Valley non-irrigated field Slope non-irrigated field, 133 slope dryland 134 dryland Terrace non-irrigated field ................. Please refer to the data document for details. 3. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

0 2020-06-09

Exchange data of research project on glacier change trend and its impact on water resources change in Tarim River Basin (2003-2005)

The glacial change trend in the Tarim River Basin and its impact on water resources change belong to the National Natural Science Foundation of China's Western Environment and Ecological Science major research project. The time is 2003.1-2005.12. The project submitted data: Kochikarbachi Glacier Observation Data (excel): Including precipitation, wind direction, wind speed and temperature data 1.3300a_climate (2003.6.29-2004.6.22): 4 hours data during the day, including field date, time, wind speed, wind up, temperature. 2.4200b_climate (2004.1.29-2004.5.12): 6:00, 8:00, 9:00, 10:00, 12:00, 14:00, 16:00, 18:00, 20:00, 22: 00, 23:00 observation data, including field date, time, wind speed, wind up, temperature. 3.3700_Precipitation: 13 days daily precipitation from 2003.7 to 2005.9 4.4200_Precipitation: 18-day daily precipitation between 2003.7 and 2006. 6

0 2020-06-09

1:150,000 desertification type and land division map of Naiman Banner

This data is digitized from the "Naiman Banner Desertification Types and Land Consolidation Zoning Map" of the drawing. The specific information of this map is as follows: * Editors: Zhu Zhenda and Qiu Xingmin * Editor: Feng Yushun * Re-photography and Mapping: Feng Yushun, Liu Yangxuan, Wen Zi Xiang, Yang Taiyun, Zhao Aifen, Wang Yimou, Li Weimin, Zhao Yanhua, Wang Jianhua * Field trips: Qiu Xingmin and Zhang Jixian * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Shanghai China Printing House * Scale: 1: 150000 * Published: May 1984 * Legend: Severe Desertification Land, Intensely Developed Desertification Land, Developing Desertification Land, Potential Desertification Land, Non-desertification Land, Fluctuating Sandy Loess Plain, Forest and Shrub, Saline-alkali Land, Mountain Land, Cultivated Land and Midian Land 2. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Naiman banner desertification type map, rivers, roads, reservoirs, railways, zoning 3. Data Attributes Desertification Class Vegetation Background Class Desertified land and cultivated sand dunes under development. Midland in Saline-alkali Land Severely desertified land Reservoir Trees and shrubbery Mountain Strongly developing desertified land Potential desertified land Lakes Non-desertification land Undulating sand-loess plain 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

0 2020-06-09

Atlas of 1:100,000 deserts in the upper reaches of the Yellow River (2000)

一. An overview This data set is a 1:100,000 distribution map of China's deserts as the data source, and it is tailored according to the river basin boundary. It mainly reflects the geographical distribution, area size, mobility and fixation degree of deserts, sandy land and gobi in the upper reaches of the Yellow River.The information source of this data set is Landsat TM image in 2000. Using remote sensing and geographic information system technology, according to the requirements of 1:100,000 scale thematic mapping, the thematic mapping of China's deserts, sandlands and gobi was carried out. 二. Data processing instructions This data set takes the 1:100,000 distribution map of China's deserts as the data source and is tailored according to the basin boundary.The information source of this data set is Landsat TM image in 2000. Using remote sensing and geographic information system technology, according to the requirements of 1:100,000 scale thematic mapping, the thematic mapping of China's deserts, sandlands and gobi was carried out.According to the system design requirements and related standards, the input data is standardized and uniformly converted into various data input standard formats. 三. data content description This data set is divided into desert and non-desert category, the non-desert code is 999. The desert is divided into three categories, namely desert (land), gobi and saline-alkali land, and the classification code is 23410, 2342000 and 2343000 respectively.Among them, deserts (land) are divided into four categories, namely mobile desert (land), semi-mobile desert (land), semi-fixed desert (land) and fixed desert (land). The classification codes are 2341010, 2341020, 2341030 and 2341040. 四. Data usage instructions It can make the resources, environment and other related workers understand the desert type, area and distribution in the upper reaches of the Yellow River, and make the classification and evaluation of the wind and sand hazards in ningmeng river section.

0 2020-06-08

MODIS daily cloudless snow products in the Tibetan Plateau (2002-2010)

This data is 2002.07.04-2010.12.31 MODIS daily cloudless snow products in the Tibetan Plateau. Due to the snow and cloud reflection characteristics, the use of optical remote sensing to monitor snow is severely disturbed by the weather. This product is based on the most commonly used cloud removal algorithm, using the MODIS daily snow product and passive microwave data AMSR-E snow water equivalent product, and the daily cloudless snow product in the Tibetan Plateau is developed. The accuracy is relatively high. This product has important value for real-time monitoring of snow cover dynamic changes on the Tibetan Plateau. Projection method: Albers Conical Equal Area Datum: D_Krasovsky_1940 Spatial resolution: 500 m Data format: tif Naming rules: maYYMMDD.tif, where ma represents the data name; YY represents the year (01 represents 2001, 02 represents 2002 ...); MM represents the month (01 represents January, 02 represents February ...); DD represents the day (01 Means 1st, 02 means 2nd ...).

0 2020-06-08

1:1 million wetland data of Shanxi Province

The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.

0 2020-06-08

The mechanism of vegetation degradation in Yuanjiang dry hot valley of Yunnan Province

The experimental project of vegetation degradation mechanism and reconstruction in Yuanjiang dry-hot valley in Yunnan belongs to the major research program of "Environmental and Ecological Science in Western China" of the National Natural Science Foundation. The principal is researcher Cao Kunfang of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. The project runs from January 2004 to December 2007. Data collected for this project include: 1. Excel table of multi-year average temperature and rainfall in Yuanjiang dry-hot valley (1961-2004), with attribute fields including monthly average temperature and monthly average rainfall. 2. excel table of annual average temperature (1750-2006) in the middle of Hengduan Mountain in China based on tree ring, with attribute fields including year and reconstructed average temperature. 3. excel table of summer temperatures (1750-2006) in the central Hengduan Mountains in southern China based on tree rings. The attribute fields include the year and the reconstructed average temperature in summer (April-September). 4. excel table of drought index (1655-2005) in central Hengduan Mountains of China based on tree rotation, with attribute fields including year and reconstruction of drought index in spring (March-May). 5. pdf file of growth dynamic graph of leaves and branches. it records the growth dynamic trend line and leaf dynamic trend graph of plants with s-type, f-type, intermediate-type and S+SD-type branches from March 22, 2004 to April 8, 2005. 6.32 Phenological Summary Tables of Woody Plants (word Document: Specific Name, Number of Observed Plants/Branches, Type of Branch Extension, Leaf Phenology, Length of Current Year Branches (cm), Total Leaves on Branches, Leaf Area (cm2), Non-leaf Period (Months), Flowering Period, Fruit Ripening Period and Fruit Type) 7. Seasonal Changes of Relative Water Content of Plant Leaves in Yuanjiang Dry-hot Valley (March 2003-February 2004) Excel Table 8. Seasonal Changes of Photosynthesis of 6 Representative Plants in Yuanjiang Dry-hot Valley (Maximum Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency, Maximum Subefficiency of photosystem II) excle Table (2003-2005) 9. excle Table of Long-term Water Use Efficiency (Isotope) Data of Representative Plants in Yuanjiang Dry-hot Valley (Water Use Efficiency in Dry and Wet Seasons of Shrimp Flower, Red-skin Water Brocade Tree, Three-leaf Lacquer, Phyllanthus emblica, Pearl Tree, Dried Sky Fruit, Cyclobalanopsis glauca, West China Small Stone Accumulation, Geranium, Tiger thorn, Willow and Pigexcrement Bean) 10. word Document of List of Plants in Mandan Qianshan, Yuanjiang

0 2020-06-08