Contact Support

Institute of Tibetan Plateau Research, CAS

Address:16 Lincui Road, Chaoyang District, Beijing 100101, P.R. China

E-mail: data@itpcas.ac.cn

phone:010-64833041

  • 2019-08-19
  • 0
  • 1

The data set was produced based on the SRTM DEM data collected by Space Shuttle Radar terrain mission in 2016, the reference data such as river, lake and other water system auxiliary data , using the arcgis hydrological model to analyze and extract the river network. There are 12 sub-basins over the Tibet Plateau, including AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow. The outer boundary is based on the 2500-metre contour line and national boundaries.

More
Observational data of soil hydrological heterogeneity in the upper reaches of the Heihe River (2012-2014)
  • 2019-07-31
  • 0
  • 1

Soil bulk density, porosity, water content, water characteristic curve, saturated hydraulic conductivity, particle analysis, infiltration rate, and sampling point location information in the upper reaches of the Heihe River Basin. 1. The data is for 2014 supplementary sampling for 2012, using the ring knife to take the original soil; 2. The soil bulk density is the dry bulk density of the soil and is measured by the drying method. The original ring-shaped soil sample collected in the field was thermostated at 105 ° C for 24 hours in an oven, and the soil dry weight was divided by the soil volume (100 cubic centimeters) , unit: g/cm 3 . 3. Soil porosity is obtained according to the relationship between soil bulk density and soil porosity; 4. Soil infiltration analysis data set, the data is the field experimental measurement data from 2013 to 2014. 5. The infiltration data is measured by “MINI DISK PORTABLE TENSION INFILTROMETER”, and the approximate saturated hydraulic conductivity under a certain negative pressure is obtained. 6. Soil particle size data was measured at the Grain Granulation Laboratory of the Key Laboratory of the Ministry of Education of Lanzhou University. The measuring instrument is a Malvern laser particle size analyzer MS2000. 7. The saturated hydraulic conductivity is measured according to the enamel hair self-made instrument of Yi Yanli (2009). The Marioot bottle was used to maintain the head during the experiment; at the same time, the Ks measured at the time was converted to the Ks value at 10 °C for analysis and calculation. 8. Soil water content data is measured using ECH2O, including 5 layers of soil water content and soil temperature. 9. The water characteristic curve is measured by the centrifuge method: the undisturbed soil of the ring cutter collected in the field is placed in a centrifuge, and each of the speeds is measured at 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200, 11600. The secondary rotor weight is obtained.

More
Administrative boundaries data at 1:1000 000 scale over the Tibetan Plateau (2017)
  • 2019-07-04
  • 0
  • 1

This data is originated from the 1:100,000 national basic geographic database, which was open freely for public by the National Basic Geographic Information Center in November 2017. The boundary of the Qinghai-Tibet Plateau was spliced and clipped as a whole, so as to facilitate the study on the Qinghai-Tibet plateau. This data set is the 1:100,000 administrative boundaries of the qinghai-tibet plateau, including National_Tibet_line、 Province_Tibet、City_Tibet、County_Tibet_poly and County_Tibet_line. Administrative boundary layer (County_Tibet_poly) property name and definition: Item Properties Describe Example PAC Administrative division code 513230 NAME The name of the County line name Administrative boundary layer (BOUL) attribute name and definition: Item Properties Describe Example GB classification code 630200 Administrative boundary layer (County_Tibet_line) attribute item meaning: Item Properties Describe Example GB 630200 Provincial boundary GB 640200 Prefectural, municipal and state administrative boundaries GB 650201 county administrative boundaries (determined)

More
Digital elevation model of TP(1KM)
  • 2019-06-28
  • 0
  • 1

DEM is the English abbreviation of Digital Elevation Model, which is the important original data of watershed topography and feature recognition.DEM is based on the principle that the watershed is divided into cells of m rows and n columns, the average elevation of each quadrilateral is calculated, and then the elevation is stored in a two-dimensional matrix.Since DEM data can reflect local topographic features with a certain resolution, a large amount of surface morphology information can be extracted through DEM, which includes slope, slope direction and relationship between cells of watershed grid cells, etc..At the same time, the surface flow path, river network and watershed boundary can be determined according to certain algorithm.Therefore, to extract watershed features from DEM, a good watershed structure pattern is the premise and key of the design algorithm. Elevation data map 1km data formed according to 1:250,000 contour lines and elevation points in China, including DEM, hillshade, Slope and Aspect maps. Data set projection: Two projection methods: Equal Area projection Albers Conical Equal Area (105, 25, 47) Geodetic coordinates WGS84 coordinate system

More
Surface DEMs for typical glaciers on the Tibetan Plateau (Version 1.0) (2003)
  • 2019-05-28
  • 0
  • 1

The DEMs of the typical glaciers on the Tibetan Plateau were provided by the bistatic InSAR method. The data were collected on November 21, 2013. It covered Puruogangri and west Qilian Mountains with a spatial resolution of 10 meters, and an elevation accuracy of 0.8 m which met the requirements of national 1:10 000 topographic mapping. Considering the characteristics of the bistatic InSAR in terms of imaging geometry and phase unwrapping, based on the TanDEM-X bistatic InSAR data, and adopting the improved SAR interference processing method, the surface DEMs of the two typical glaciers above were generated with high resolution and precision. The data set was in GeoTIFF format, and each typical glacial DEM was stored in a folder. For details of the data, please refer to the Surface DEMs for typical glaciers on the Tibetan Plateau - Data Description.

More
Primary road network dataset at 1:1000 000 in the Sanjiangyuan region (2017)
  • 2019-05-28
  • 0
  • 1

This data comes from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. The data trend is 2017. The data set is 1:1 million traffic data in Sanjiangyuan area, including road (LRDL) and railway (LRRL) layers. Highway (LRDL) includes national, provincial, county, Township and other highways; Railway (LRRL) includes standard rail, narrow rail, subway and light rail. Highway (LRDL) Attribute Item Name and Definition: Attribute Item Description Fill in Example GB National Standard Classification Code 420301 RN Road Number X828 NAME Road Name RTEG Road Grade IV TYPE Road Type Viaduct Meaning of Highway (LRDL) Attribute Item: Attribute Item Code Description GB 420101 National Highway 420102 Building China Road 420201 Provincial Highway 420102 Provincial Highway in Architecture 420301 County Road 420302 Jianzhong County Road 420400 Rural Road 420800 Tractor ploughing Road 440100 Simple Highway 440200 Rural Road 440300 Trail Name and definition of railway (LRRL) attribute item: Attribute Item Description Fill in Example GB National Standard Classification Code 410101 RN Railway No. 0907 NAME Railway Name Qinghai-Tibet Railway TYPE Railway Type Elevated

More
The Digital Elevation Model of the Tibetan Plateau (2000)
  • 2019-05-28
  • 0
  • 1

This data set is a digital elevation model of the Tibetan Plateau and can be used to assist in analysis and research of basic geographic information for the Tibetan Plateau. The raw data were the Shuttle Radar Topography Mission (SRTM) data, which were provided by Global Land Cover Network (GLCN), and the raw data were framing data , using the WGS84 coordinate system, including latitude and longitude, with a spatial resolution of 3″. After the mosaic processing, the Nodata (null data) generated in the mosaic process were interpolated and filled. After filling, the projection conversion process was performed to generate data as Albers equal area conical projection. After the conversion projection, the spatial resolution of the data was 90 m. Finally, the boundary of the Tibetan Plateau was used for cutting to obtain DEM data. This data table has two fields. Field 1: value Data type: long integer Interpretation: altitude elevation Unit: m Field 2: count Data type: long integer Interpretation: The number of map spots corresponding to the altitude elevation Data accuracy: spatial resolution: 90 m

More
Integration dataset of Qinghai-Tibet Plateau boundary
  • 2019-05-28
  • 0
  • 1

The integration dataset of Tibetan Plateau boundary includes: TPBoundary_2500m:Based on ETOPO5 Global Surface Relief, ENVI+IDL is used to extract the longitude of the Tibetan Plateau (65~105) and the altitude of 2500 meters above the latitude (20~45); TPBoundary_3000m:Based on ETOPO5 Global Surface Relief, ENVI+IDL is used to extract the longitude of the Tibetan Plateau (65~105) and the altitude of 3000 meters above the latitude (20~45); TPBoundary_HF (High Frequency):Li Bingyuan (1987) has conducted a systematic discussion on the principle and specific boundary of determining the scope of the Qinghai-Tibet Plateau. From the perspective of the formation and basic characteristics of plateau geomorphology, Based on the geomorphological features, the plateau surface and its altitude, and considering the integrity of the mountain as the basic principle for determining the plateau range.Zhang Yili (2002) according to the results of new research in related fields and years of field practice, demonstration principles to determine the scope and boundaries of the Tibetan Plateau, Based on the information technology method, the location and boundary position of the Qinghai-Tibet Plateau are accurately located and quantitatively analyzed. It is concluded that the Qinghai-Tibet Plateau is partly in the Pamir Plateau in the west, the Hengduan Mountains in the east, the southern margin of the Himalayas in the south, and the Kunlun Mountains in the north. Mountain - north side of Qilian Mountain. On April 14, 2017, the Ministry of Civil Affairs of the People's Republic of China issued the "Announcement on Supplementing the Public Use of Place Names in the Southern Region of Tibet (First Batch)", adding Wujianling, Mirage, Qu Dengbu, and Mechuca 6 places in southern Tibet such as Baimingla Mountain Pass and Namkam;. TPBoundary_rectangle:According to the range Lon (63~105E) & Lat (20~45N), The data is projected using latitude and longitude WGS84.. Project source: national natural science foundation of China (41571068,41301063) Spatial range and projection mode of data: elevation greater than 2500m, WGS84 projection As the basic data, the boundary of qinghai-tibet plateau can be used as a reference for all kinds of geoscientific research on Qinghai-Tibet Plateau.

More
Natural Places Names Dataset at 1:250 000 in Sanjiangyuan Region (2015)
  • 2019-05-25
  • 0
  • 1

This data originates from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. The data trend is 2015. This data set includes 1:250,000 natural place names (AANP) in Sanjiangyuan area, including traffic element names, memorial sites and historic sites, mountain names, water system names, marine geographical names, natural geographical names, etc. Natural Place Name Data (AANP) Attribute Item Names and Definitions: Attribute Item Description Fill in Example NAME Name Ramsay Laboniwa PINYIN Chinese Pinyin Lamusailabaoniwa CLASS Toponymic Classification Code HB

More
The Slope Aspect Map of the Tibetan Plateau (2000)
  • 2019-05-22
  • 0
  • 1

This data set contains the digital slope aspect distribution and slope aspect degree data of the Tibetan Plateau, which can be used to assist in basic geographic information analysis and research work on the Tibetan Plateau region. The raw data were the Shuttle Radar Topography Mission (SRTM) data provided by Global Land Cover Network (GLCN) using the WGS84 coordinate system, and the raw data were framing data, including latitude and longitude data, with a spatial resolution of 3″. After the mosaic processing, the Nodata (null data) generated in the mosaic process were interpolated and filled, and after filling, a projection conversion process was performed to generate an equal-area conical projection of the data bit Albers, after conversion projection, the spatial resolution was 90 m. Finally, the boundary of the Tibetan Plateau was used for cutting to obtain DEM data. Use the spatial analysis module under ArcMap to calculate the slope aspect and generate the slope aspect map. Pixel data: value Data type: floating point Interpretation: slope degree Dimension: degree Data accuracy: spatial resolution 90 m

More