Contact Support

Institute of Tibetan Plateau Research, CAS

Address:16 Lincui Road, Chaoyang District, Beijing 100101, P.R. China

E-mail: data@itpcas.ac.cn

phone:010-64833041

MODIS Daily Cloud-free Snow Cover Product over the Tibetan Plateau (2002-2015)
  • 2019-07-23
  • 0
  • 1

Snow duration on the Tibetan Plateau changes relatively quickly, and the mountainous areas around the plateau are characterized by abundant snow and ice resources and active atmospheric convection. Optical remote sensing is often affected by clouds. Snow cover monitoring needs to consider the cloud-removal problem on a daily time scale. Taking full account of the terrain of the Tibetan Plateau and the characteristics of snow on the mountains, this data set adopted a combination of various cloud-removing processes and steps to gradually remove the daily snow cover by maintaining the cloud-classify accuracy of the snow cover. In addition, a step-by-step comprehensive classification algorithm was formed, and the “MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)” was completed. Two snow seasons from October 1, 2009, to April 30, 2011, were selected as test data for algorithm research and accuracy verification, and the snow depth data provided by 145 ground stations in the study area were used as a ground reference. The results showed that in the plateau region, when the snow depth exceeds 3 cm, the total classification accuracy of the cloud-free snow cover products is 96.6%, and the snow cover classification accuracy is 89.0%. The whole algorithm procedure, based on WGS84 projected MODIS snow products (MOD10A1 and MYD10A1) with medium resolution, results in a small loss of cloud-removal accuracy, which made the data highly reliable.

More
Snow depth Dataset of Eurasian (Version 1.0) (1980-2016)
  • 2019-06-18
  • 0
  • 1

The Eurasia snow depth data set is produced by the passive microwave remote sensing inversion method. The data cover from 1980 to 2016 with a temporal resolution of one day, the spatial coverage of the data is Eurasia, and the spatial resolution is 0.25°. The remote sensing inversion method adopts a dynamic brightness temperature gradient algorithm. The algorithm considers the spatial and temporal variations of snow characteristics and establishes the spatial and seasonal dynamic relationships between the temperature difference at different frequencies and the measured snow depth. The long-term sequence of satellite-borne passive microwave brightness temperature data were derived from three sensors, SMMR, SSM/I and SSMI/S. For temporal consistency of the brightness temperature among different sensors, the brightness temperature of different sensors was intercalibrated before snow depth extraction. The verification of the measured site shows that the relative deviation of Eurasia snow depth data is within 30%. The data are stored as a txt file every day, each file includes a file header (projection mode) and a 720*332 snow depth matrix, and each snow depth represents a 0.25°*0.25° grid. For details of the data, please refer to the Eurasia Snow Depth Data Set - Data Description

More
Daily Fractional Snow Cover Data Set over High Asia (2002-2016)
  • 2019-05-30
  • 0
  • 1

Due to the short snow duration and thin snow layer on the Tibetan Plateau, dynamic monitoring data for daily fractional snow cover are urgently needed in order to better understand water cycling and other processes. This data set is based on MODIS Snow Cover Daily L3 Global 500 m Grid data and includes the Normalized Difference Snow Index (NDSI) data product generated from MODIS/Terra data (MOD10A1) and MODIS/Aqua data (MYD10A1). The data are in the .hdf format. The projection method is sinusoidal map projection. Combining the advantages of 90 m SRTM terrain data and fractional snow cover estimation algorithms under multiple cloud coverage types, the fractional snow cover under different cloud coverage conditions can be re-estimated to meet the production requirements of the daily less cloud (< 10%) data products in High Asia. On the basis of this method, the MODIS daily fractional snow cover data set over High Asia (2002-2016) was constructed. By taking the binary snow product under cloudless conditions as a reference, the spatial and temporal comparisons between snow distribution and snow coverage show that the spatio-temporal characteristics of the product and the binary products are highly consistent. Taking the winter of 2013 as an example, when the fractional snow cover is greater than 50%, the correlation can reach 0.8628. This data set provides daily fractional snow cover data for use in studying snow dynamics, the climate and environment, hydrology, energy balance, and disaster assessment in High Asia.

More
Snow Water Equivalent Data Set for the High Asia Region (2002-2011)
  • 2019-05-29
  • 0
  • 1

Snow water equivalent (the product of snow depth and density) is an important factor reflecting the change in snow cover on the ground surface, and it is also an important parameter in surface hydrological models and climatic models. As the “Headwaters of Asia”, the Tibetan Plateau is the source of several major rivers, which are fed with glacier and snow meltwater. Based on the sensitivity of passive microwave radiation to snow, these monitoring data enable long-term inversion of snow water equivalents in the High Asia region. The data set includes daily snow water equivalent, monthly snow water equivalent and five-day snow water equivalent, and these data can be applied in analyses of local hydrology, animal husbandry production and other fields.

More
Long-term Sequence Data Set of China Snow Depth (1979-2016)
  • 2019-05-28
  • 0
  • 1

This data set is an upgraded version of the “Long-term Sequence Data Set of China Snow Depth". The source data of the dataset differ from those of the previous version. Because AMSR-E stopped running in 2011, snow depth from 2008 to 2016 is extracted using the brightness temperature of the SSMI/S sensor. This dataset provides daily data of snow depth distribution in China from January 1, 1979, to December 31, 2016, with a spatial resolution of 0.25 degrees. The original data used to invert the snow depth dataset are the daily passive microwave brightness temperature data (EASE-Grid) from SMMR (1979-1987), SSM/I (1987-2007) and SSMI/S (2008-2016) processed by the National Snow and Ice Data Center (NSIDC). Because the three sensors are mounted on different platforms, there is a certain system inconsistency in the obtained data. The time consistency of the brightness temperature data is improved by cross-calibrating the brightness temperatures of different sensors. The snow depth inversion is then performed using the algorithm specifically modified for China by Dr. Tao Che based on the Chang algorithm. For the specific inversion method, please refer to the data specification, “Long-term Sequence Data Set of China Snow Depth (1979-2016) Introduction. doc". The data set is a latitude and longitude projection, with one file each day, the naming convention of which is year + day; for example, 1990001 represents the first day of 1990, and 1990207 represents the 207th day of 1990. For a detailed data description, please refer to the data file.

More
Snow cover dataset based on optical instrument remote sensing with 1km spatial resolution on the Qinghai-Tibet Plateau (1989-2018)
  • 2019-05-28
  • 0
  • 1

Snow cover dataset is produced by snow and cloud identification method based on optical instrument observation data, covering the time from 1989 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground under clear sky or transparent thin cloud is covered by snow. The input data sources include AVHRR L1 data of NOAA and MetOp serials of satellites, and L1 data corresponding to AVHRR channels taken from TERRA/MODIS. Decision Tree algorithm (DT) with dynamic thresholds is employed independent of cloud mask and its cloud detection emphasizes on reserving snow, particularly under transparency cirrus. It considers a variety of methods for different situations, such as ice-cloud over the water-cloud, snow in forest and sand, thin snow or melting snow, etc. Besides those, setting dynamic threshold based on land-surface type, DEM and season variation, deleting false snow in low latitude forest covered by heavy aerosol or soot, referring to maximum monthly snowlines and minimum snow surface brightness temperature, and optimizing discrimination program, these techniques all contribute to DT. DT discriminates most snow and cloud under normal circumstances, but underestimates snow on the Qinghai-Tibet Plateau in October. Daily product achieves about 95% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.

More
Snow cover dataset based on multi-source remote sensing products blended with 1km spatial resolution on the Qinghai-Tibet Plateau (1995-2018)
  • 2019-05-28
  • 0
  • 1

This dataset is blended by two other sets of data, snow cover dataset based on optical instrument remote sensing with 1km spatial resolution on the Qinghai-Tibet Plateau (1989-2018) produced by National Satellite Meteorological Center, and near-real-time SSM/I-SSMIS 25km EASE-grid daily global ice concentration and snow extent (NISE, 1995-2018) provided by National Snow and Ice Data Center (NSIDC, U.S.A). It covers the time from 1995 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground is covered by snow. The input data sources include daily snow cover products generated by NOAA/AVHRR, MetOp/AVHRR, and alternative to AVHRR taken from TERRA/MODIS corresponding observation, and snow extent information of NISE derived from observation by SSM/I or SSMIS of DMSP satellites. The processing method of data collection is as following: first, taking 1km snow cover product from optical instruments as initial value, and fully trusting its snow and clear sky without snow information; then, under the aid of sea-land template with relatively high resolution, replacing the pixels or grids where is cloud coverage, no decision, or lack of satellite observation, by NISE's effective terrestrial identification results. For some water and land boundaries, there still may be a small amount of cloud coverage or no observation data area that can’t be replaced due to the low spatial resolution of NISE product. Blended daily snow cover product achieves about 91% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.

More
WATER: Dataset of snow properties measured by the Snowfork in the Binggou watershed foci experimental area
  • 2019-05-23
  • 0
  • 1

The dataset of snow properties measured by the Snowfork was obtained in the Binggou watershed foci experimental area from Mar. 10 to 30, 2008, in cooperation with simultaneous airborne, satellite-borne and ground-based remote sensing experiments and other control experiments. Observation items included (1) physical quantities by direct observations: resonant frequency, the rate of attenuation and 3db bandwidth; (2) physical quantities by indirect observations: snow density, snow complex permittivity (the real part and the imaginary part), snow volumetric moisture and snow gravimetric moisture. 13 files are archived, and the user guide of the sampling plot and observation background is included too.

More
WATER: Dataset of ground truth measurements for snow synchronizing with MODIS in the Binggou watershed foci experimental area on Mar. 14, 2008
  • 2019-05-23
  • 0
  • 1

The dataset of ground truth measurements for snow synchronizing with MODIS was obtained in the Binggou watershed foci experimental area on Mar. 14, 2008. Those provide reliable data for snow-cover extent mapping and the retrieval of the snow surface temperature from MODIS remote sensing approaches. Observation items included: (1) Snow parameters including the snow surface temperature, the snow-soil interface temperature, the land surface (ground surface) temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, snow depth by the ruler, snow density by the snow shovel, the snow grain size by the handheld microscope and the snow surface temperature synchronizing with MODIS. (2) Snow albedo by the total radiometer in BG-A from 11:10-13:24 on Mar. 14, 2008. (3) The snow spectrum by the portable ASD (Xinjiang Meteorological Administration) synchronizing with MODIS in BG-A and BG-I. Two files including raw data and the preprocessed data were archived.

More
WATER: Dataset of ground truth measurements for snow synchronizing with the airborne microwave radiometers (K&Ka bands) mission in the Binggou watershed foci experimental area on Mar. 30, 2008
  • 2019-05-23
  • 0
  • 1

The dataset of ground truth measurements for snow synchronizing with the airborne microwave radiometers (K&Ka bands) mission was obtained in the Binggou watershed foci experimental area on Mar. 30, 2008. Those provide reliable data for retrieval of snow parameters and properties, especially for dry and wet snow identification. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-A; (2) Snow parameters including snow depth, the snow surface temperature synchronizing with the airborne microwave radiometers (K&Ka bands), the snow layer temperature, the snow grain size and snow density in BG-A (10 points), BG-B (6 points), BG-F (12 points), BG-H (21 points) and BG-I (20 points); For each snow pit, the snowpack was divided into several layers with 10-cm intervals of snow depth. The layer depth (by the ruler), the snow grain size (by the handheld microscope), snow density (by the cutting ring) and the snow temperature (by the probe thermometer) were obtained at each snow pit. Two files including raw data and the preprocessed data were archived.

More