The dataset of spatio-temporal water resources distribution in the source regions of Yangtze River and Yellow River (1998-2017)
  • 2019-09-22
  • 0
  • 1

This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.

More
Long-term sequence dataset of China snow depth (1979-2018)
  • 2019-09-19
  • 0
  • 1

This data set is an upgraded version of the “Long-term Sequence Data Set of China Snow Depth". The source data of the dataset differ from those of the previous version. Because AMSR-E stopped running in 2011, snow depth from 2008 to 2018 is extracted using the brightness temperature of the SSMI/S sensor. This dataset provides daily data of snow depth distribution in China from January 1, 1979, to December 31, 2018, with a spatial resolution of 0.25 degrees. The original data used to invert the snow depth dataset are the daily passive microwave brightness temperature data (EASE-Grid) from SMMR (1979-1987), SSM/I (1987-2007) and SSMI/S (2008-2018) processed by the National Snow and Ice Data Center (NSIDC). Because the three sensors are mounted on different platforms, there is a certain system inconsistency in the obtained data. The time consistency of the brightness temperature data is improved by cross-calibrating the brightness temperatures of different sensors. The snow depth inversion is then performed using the algorithm specifically modified for China by Dr. Tao Che based on the Chang algorithm. For the specific inversion method, please refer to the data specification, “Long-term Sequence Data Set of China Snow Depth (1979-2018) Introduction. doc". The data set is a latitude and longitude projection, with one file each day, the naming convention of which is year + day; for example, 1990001 represents the first day of 1990, and 1990207 represents the 207th day of 1990. For a detailed data description, please refer to the data file.

More
MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)
  • 2019-09-15
  • 0
  • 1

Snow duration on the Tibetan Plateau changes relatively quickly, and the mountainous areas around the plateau are characterized by abundant snow and ice resources and active atmospheric convection. Optical remote sensing is often affected by clouds. Snow cover monitoring needs to consider the cloud-removal problem on a daily time scale. Taking full account of the terrain of the Tibetan Plateau and the characteristics of snow on the mountains, this data set adopted a combination of various cloud-removing processes and steps to gradually remove the daily snow cover by maintaining the cloud-classify accuracy of the snow cover. In addition, a step-by-step comprehensive classification algorithm was formed, and the “MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)” was completed. Two snow seasons from October 1, 2009, to April 30, 2011, were selected as test data for algorithm research and accuracy verification, and the snow depth data provided by 145 ground stations in the study area were used as a ground reference. The results showed that in the plateau region, when the snow depth exceeds 3 cm, the total classification accuracy of the cloud-free snow cover products is 96.6%, and the snow cover classification accuracy is 89.0%. The whole algorithm procedure, based on WGS84 projected MODIS snow products (MOD10A1 and MYD10A1) with medium resolution, results in a small loss of cloud-removal accuracy, which made the data highly reliable.

More
Observational snow depth dataset of the Tibetan Plateau (Version 1.0) (1961-2013)
  • 2019-09-15
  • 0
  • 1

The Tibetan Plateau has an average altitude of over 4000 m and is the region with the highest altitude and the largest snow cover in the middle and low latitudes of the Northern Hemisphere regions. Snow cover is the most important underlying surface of the seasonal changes on the Tibetan Plateau and an important composing element of ecological environment. Ice and snow melt water is an important water resource of the plateau and its downstream areas. At the same time, plateau snow, as an important land-surface forcing factor, is closely related to disastrous weather (such as droughts and floods) in East Asia, the South Asian monsoon and in the middle and lower reaches of the Yangtze River. It is an important indicator of short-term climate prediction and one of the most sensitive responses to global climate change. The snow depth refers to the vertical depth from the surface of the snow to the ground. It is an important parameter for snow characteristics and one of the conventional meteorological observation elements. It is the key parameter of snow water equivalent estimation, climate effect studies of snow cover, the basin water balance, the simulation and monitoring of snow-melt, and snow disaster evaluation and grading. In this data set, the Tibetan Plateau boundary was determined by adopting the natural topography as the leading factor and by comprehensive consideration of the principles of altitude, plateau and mountain integrity. The main part of the plateau is in the Tibetan Autonomous Region and Qinghai Province, with an area of 2.572 million square kilometers, accounting for 26.8% of the total land area of China. The snow depth observation data are the monthly maximum snow depth data after quality detection and quality control. There are 102 meteorological stations in the study area, most of which were built during the 1950s to 1970s. The data for some months or years for sites existing during this period were missing, and the complete observational records from 1961 to 2013 were adopted. The temporal resolution is daily, the spatial coverage is the Tibetan Plateau, and all the data were quality controlled. Accurate and detailed plateau snow depth data are of great significance for the diagnosis of climate change, the evolution of the Asian monsoon and the management of regional snow-melt water resources.

More
Snow cover dataset of the Tibetan Plateau - multisource fusion algorithm (2008-2010)
  • 2019-09-15
  • 0
  • 1

This dataset is the snow cover dataset based on the MODIS fractional snow cover mapping algorithm Coupled Regional Approach (CRA). The CRA algorithm mainly consists of three parts. (1) First, the N-FINDR (Volume Iterative Approach) and OSP (Orthogonal Subspace Projection) are used to automatically extract the endmember according to the settings (extracting 30 end endmembers). (2) On the basis of automatic extraction, combined with the IGBG land cover type map, six types of endmembers of snow, vegetation, cloud, soil, rock and water are selected by the manual screening method, and an annual spectrum database is established according to the 2009 image. There are 3 spectra in the early, middle and late months and 36 spectra a year. (3) The established spectral database is used as a priori knowledge, and based on prior knowledge, the fully constrained linear unmixing method (FCLS) for subpixel decomposition is used to obtain the fractional snow cover products. The NDSI ratio algorithm with improved topographic effect is used to obtain the snow cover area, the spatiotemporal data are then interpolated, and, finally, the multisource data fusion with the AMSR-E microwave snow depth product is undertaken. The dataset adopts a latitude and longitude (Geographic) projection method. The datum is WGS84, and the spatial resolution is 0.005°. It provides the daily cloudless snow cover area map of the Tibetan Plateau from 2008 to 2010. The data set is stored by year and consists of 3 folders from 2008 to 2010. Each folder contains the classification results of the daily snow cover of the current year. It is a tif file with the naming rule YYYY***.tif, in which YYYY represents the year (2008-2010), and *** represents the day (001~365/ 366). It can be opened directly with ARCGIS or ENVI.

More
Daily fractional snow cover dataset over High Asia (2002-2016)
  • 2019-09-15
  • 0
  • 1

Due to the short snow duration and thin snow layer on the Tibetan Plateau, dynamic monitoring data for daily fractional snow cover are urgently needed in order to better understand water cycling and other processes. This data set is based on MODIS Snow Cover Daily L3 Global 500 m Grid data and includes the Normalized Difference Snow Index (NDSI) data product generated from MODIS/Terra data (MOD10A1) and MODIS/Aqua data (MYD10A1). The data are in the .hdf format. The projection method is sinusoidal map projection. Combining the advantages of 90 m SRTM terrain data and fractional snow cover estimation algorithms under multiple cloud coverage types, the fractional snow cover under different cloud coverage conditions can be re-estimated to meet the production requirements of the daily less cloud (< 10%) data products in High Asia. On the basis of this method, the MODIS daily fractional snow cover data set over High Asia (2002-2016) was constructed. By taking the binary snow product under cloudless conditions as a reference, the spatial and temporal comparisons between snow distribution and snow coverage show that the spatio-temporal characteristics of the product and the binary products are highly consistent. Taking the winter of 2013 as an example, when the fractional snow cover is greater than 50%, the correlation can reach 0.8628. This data set provides daily fractional snow cover data for use in studying snow dynamics, the climate and environment, hydrology, energy balance, and disaster assessment in High Asia.

More
Snow depth dataset of Eurasian (Version 1.0) (1980-2016)
  • 2019-09-14
  • 0
  • 1

The Eurasia snow depth data set is produced by the passive microwave remote sensing inversion method. The data cover from 1980 to 2016 with a temporal resolution of one day, the spatial coverage of the data is Eurasia, and the spatial resolution is 0.25°. The remote sensing inversion method adopts a dynamic brightness temperature gradient algorithm. The algorithm considers the spatial and temporal variations of snow characteristics and establishes the spatial and seasonal dynamic relationships between the temperature difference at different frequencies and the measured snow depth. The long-term sequence of satellite-borne passive microwave brightness temperature data were derived from three sensors, SMMR, SSM/I and SSMI/S. For temporal consistency of the brightness temperature among different sensors, the brightness temperature of different sensors was intercalibrated before snow depth extraction. The verification of the measured site shows that the relative deviation of Eurasia snow depth data is within 30%. The data are stored as a txt file every day, each file includes a file header (projection mode) and a 720*332 snow depth matrix, and each snow depth represents a 0.25°*0.25° grid. For details of the data, please refer to the Eurasia Snow Depth Data Set - Data Description

More
Snow water equivalent dataset for the High Asia Region (2002-2011)
  • 2019-09-14
  • 0
  • 1

Snow water equivalent (the product of snow depth and density) is an important factor reflecting the change in snow cover on the ground surface, and it is also an important parameter in surface hydrological models and climatic models. As the “Headwaters of Asia”, the Tibetan Plateau is the source of several major rivers, which are fed with glacier and snow meltwater. Based on the sensitivity of passive microwave radiation to snow, these monitoring data enable long-term inversion of snow water equivalents in the High Asia region. The data set includes daily snow water equivalent, monthly snow water equivalent and five-day snow water equivalent, and these data can be applied in analyses of local hydrology, animal husbandry production and other fields.

More
WATER: Dataset of snow properties measured by the Snowfork in the Binggou watershed foci experimental area during the pre-observation period on Dec, 2007
  • 2019-09-14
  • 0
  • 1

The dataset of snow properties measured by the Snowfork was obtained in the Binggou watershed foci experimental area from Dec. 5-16 2007, during the pre-observation period. The aims of the measurements were to verify applicability of the instruments and to acquire snow parameters for simultaneous airborne, satellite-borne and ground-based remote sensing experiments and other control experiments. Observation items included: (1) physical quantities by direct observations: resonant frequency, the rate of attenuation and 3db bandwidth (2) physical quantities by indirect observations: snow density, snow complex permittivity (the real part and the imaginary part), snow volumetric moisture and snow gravimetric moisture. Five files including raw data and processed data are kept, data by the Snowfork on Dec 5, data by BG-A MODIS on Dec 6 and 7, data in BG-B, BG-C, BG-D and BG-E on Dec 10, and data in BG-D with the microwave radiometer on Dec 14 and 16.

More