An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018

Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at (Muhammad and Thapa, 2019).

0 2020-06-23

This dataset of Aerosol optical thickness over the central and western part of China

This dataset includes the monthly AOD datasets from MODIS Aqua of the central and western part of China. By applying the Deep Blue (DB) and Dark Target (DT) algorithms over land, and the DT over-water algorithm, three types of AOD products at 550 nm are relseaed (e.g. Dark Target, Deep Blue and Merged AOD). In this project, monthly AOD products from July 2003 to November 2018 are collected, which can provide the informations of AOD and air pollutions over the central and western part of China.

0 2020-05-07

Global 0.05° near-surface freeze-thaw states data set (2002-2018)

The near-surface freeze-thaw affects the water and energy exchanges mode and efficiency between the land and atmosphere. The transition of the freeze/thaw state affects the pattern of runoff concentration, which has an important impact on regional and global water cycle. Based on the remote sensing data of AMSR-E/2 passive microwave sensors and MODIS optical sensor, this data set uses the discriminant function algorithm and its downscaling method to produce a global mapping of near-surface freeze-thaw states with higher spatial resolution. This product covers the time period from 2002 to 2018 (daily), and spatial coverage is global scale (spatial resolution of 0.05°). It can be used to analyze the start/end time of global near-surface freeze/thaw states, the duration of freezing/thawing and their changing trends, and provide data support for studying the mechanism of water cycle and energy exchanges in the context of global change.

0 2020-04-28

River lake ice phenology data in QPT V1.0 (2002-2018)

River lake ice phenology is sensitive to climate change and is an important indicator of climate change. 308 excel file names correspond to Lake numbers. Each excel file contains six columns, including daily ice coverage information of corresponding lakes from July 2002 to June 2018. The attributes of each column are: date, lake water coverage, lake water ice coverage, cloud coverage, lake water coverage and lake ice coverage after cloud treatment. Generally, the ice cover area ratio of 0.1 and 0.9 is used as the basis to distinguish the lake ice phenology. The excel file contained in the data set can further obtain four lake ice phenological parameters: Fus, fue, bus, bue, and 92 lakes. Two parameters, Fus and bue, can be obtained.

0 2020-01-19

River lake ice range / coverage data set v1.0

There are many lakes in the Qinghai Tibet Plateau. The glacial phenology and duration of lakes in this region are very sensitive to regional and global climate change, so they are used as the key indicators of climate change research, especially the comparative study of the three polar environmental changes of the earth. However, due to its poor natural environment and sparse population, there is a lack of conventional field measurement of lake ice phenology. The lake ice was monitored with a resolution of 500 meters by using the normalized difference snow index (NDSI) data of MODIS. The traditional snow map algorithm is used to detect the lake daily ice amount and coverage under the condition of sunny days, and the lake daily ice amount and coverage under the condition of cloud cover are re determined through a series of steps based on the spatiotemporal continuity of the lake surface conditions. Through time series analysis, 308 lakes larger than 3km2 are identified as effective records of lake ice range and coverage, forming a daily lake ice range and coverage data set, including 216 lakes.

0 2019-11-05