The digital elevation model of the Tibetan Plateau (2000)

This data set is a digital elevation model of the Tibetan Plateau and can be used to assist in analysis and research of basic geographic information for the Tibetan Plateau. The raw data were the Shuttle Radar Topography Mission (SRTM) data, which were provided by Global Land Cover Network (GLCN), and the raw data were framing data , using the WGS84 coordinate system, including latitude and longitude, with a spatial resolution of 3″. After the mosaic processing, the Nodata (null data) generated in the mosaic process were interpolated and filled. After filling, the projection conversion process was performed to generate data as Albers equal area conical projection. After the conversion projection, the spatial resolution of the data was 90 m. Finally, the boundary of the Tibetan Plateau was used for cutting to obtain DEM data. This data table has two fields. Field 1: value Data type: long integer Interpretation: altitude elevation Unit: m Field 2: count Data type: long integer Interpretation: The number of map spots corresponding to the altitude elevation Data accuracy: spatial resolution: 90 m

0 2021-07-19

SeaWiFS NDVI dataset for Sanjiangyuan (1997-2007)

The data set is NDVI data of long time series acquired by SeaWiFS. The time range of the data set is from September 1997 to 2007. In order to remove the noise in NDVI data, the maximum synthesis is carried out. A NDVI image is synthesized every 15 days. The data set is cut out from the global data set, so as to carry out the research and analysis of the source areas of the three rivers separately. The data format of this data set is geotiff, spatial resolution is 4 km, temporal resolution is 15 days, time range: 256 days in 1997 to 365 days in 2007.

0 2021-04-20

Natural places names dataset at 1:1000 000 in Sanjiangyuan region (2017)

This data comes from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. The data trend is 2017. This data set is composed of 1:1 million natural place names (AANP) in Sanjiangyuan area, including traffic element names, memorial sites and historic sites, mountain names, river system names, marine geographical names, natural geographical names, etc. Natural Place Name Data (AANP) Attribute Item Names and Definitions: Attribute Item Description Fill in Example CLASS Toponymic Classification Code NAME in Chinese words PINYIN in Chinese Pinyin

0 2021-04-19

Map of the frozen soil in the Tibetan Plateau (2003)

The Tibetan Plateau is known as “The World’s Third Pole” and “The Water Tower of Asia”. A relatively accurate map of the frozen soil in the Tibetan Plateau is therefore significant for local cold region engineering and environmental construction. Thus, to meet the engineering and environmental needs, a decision tree was established based on multi-source remote sensing data (elevation, MODIS surface temperature, vegetation index and soil moisture) to divide the permafrost and seasonally frozen soil of the Tibetan Plateau. The data are in grid format, DN=1 stands for permafrost, and DN=2 stands for seasonally frozen soil. The elevation data are from the 1 km x 1 km China DEM (digital elevation model) data set (http://westdc.westgis.ac.cn); the surface temperature is the yearly average data based on daily data estimated by Bin Ouyang and others using the Sin-Linear method. The estimation of the daily average surface temperature was based on the application of the Sin-Linear method to MODIS surface products, and to reduce the time difference with existing frozen soil maps, the surface temperature of the study area in 2003 was used as the information source for the classification of frozen soil. Vegetation information was extracted from the 16-day synthetic product data of Aqua and Terra (MYD13A1 and MOD13A1) in 2003. Soil moisture values were obtained from relatively high-quality ascending pass data collected by AMSR-E in May 2003. Therefore, based on the above data, the classification threshold of the decision tree was obtained using the Map of Frozen Soil in the Tibetan Plateau (1:3000000) and Map of the Glaciers, Frozen Soil and Deserts in China (1:4000000) as the a priori information. Based on the prosed method, the frozen soil types on the Tibetan Plateau were classified. The classification results were then verified and compared with the surveyed maps of frozen soil in the West Kunlun Mountains, revised maps, maps of hot springs and other existing frozen soil maps related to the Tibetan Plateau. Based on the Tibetan Plateau frozen soil map generated from the multi-source remote sensing information, the permafrost area accounts for 42.5% (111.3 × 104 km²), and the seasonally frozen soil area accounts for 53.8% (140.9 × 104 km²) of the total area of the Tibetan Plateau. This result is relatively consistent with the prior map (the 1:3000000 Map of Frozen Soil in the Tibetan Plateau). In addition, the overall accuracy and Kappa coefficient of the different frozen soil maps show that the frozen soil maps compiled or simulated by different methods are basically consistent in terms of the spatial distribution pattern, and the inconsistencies are mainly in the boundary areas between permafrost areas and seasonally frozen soil areas.

0 2021-04-09

The 30-m land cover data of Tibetan Plateau (2010)

These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) (http://www.globallandcover.com) and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.

0 2021-04-09

The sequence data of livestock number at county level on the Tibetan Plateau (1970-2006)

This data set contains sequence data of the number variation of livestock in the major cities and counties of the Tibetan Plateau from 1970 to 2006. It is used to study the social and economic changes of the Tibetan Plateau. The table has ten fields. Field 1: Year Interpretation: Year of the data Field 2: Province Interpretation: The province from which the data were obtained Field 3: City/Prefecture Interpretation: The city or prefecture from which the data were obtained Field 4: County Interpretation: The name of the county Field 5: Large livestock (10,000) Interpretation: The number of large livestock such as cattle, horses, mules, donkeys, and camels. Field 6: Cattle herd (10,000) Interpretation: Number of cattle Field 7: Equine animals(10,000) Interpretation: The number of equine animals such as horses, mules and donkeys. Field 8: Horses (10,000) Interpretation: The number of horses Field 9: Sheep (10,000) Interpretation: The number of sheep Field 10: Data Sources Interpretation: Source of Data The data come from the statistical yearbook and county annals. Some are listed as follows. [1] Gansu Yearbook Editorial Committee. Gansu Yearbook [J]. Beijing: China Statistics Press, 1984, 1988-2009 [2] Statistical Bureau of Yunnan Province. Yunnan Statistical Yearbook [J]. Beijing: China Statistics Press, 1988-2009 [3] Statistical Bureau of Sichuan Province, Sichuan Survey Team. Sichuan Statistical Yearbook [J]. Beijing: China Statistics Press, 1987-1991, 1996-2009 [4] Statistical Bureau of Xinjiang Uighur Autonomous Region . Xinjiang Statistical Yearbook [J]. Beijing: China Statistics Press, 1989-1996, 1998-2009 [5] Statistical Bureau of Tibetan Autonomous Region. Tibet Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-2009 [6] Statistical Bureau of Qinghai Province. Qinghai Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-1994, 1996-2008. [7] County Annals Editorial Committee of Huzhu Tu Autonomous County. County Annals of Huzhu Tu Autonomous County [J]. Qinghai: Qinghai People's Publishing House, 1993 [8] Haiyan County Annals Editorial Committee. Haiyan County Annals[J]. Gansu: Gansu Cultural Publishing House, 1994 [9] Menyuan County Annals Editorial Committee. Menyuan County Annals[J]. Gansu: Gansu People's Publishing House, 1993 [10] Guinan County Annals Editorial Committee. Guinan County Annals [J]. Shanxi: Shanxi People's Publishing House, 1996 [11] Guide County Annals Editorial Committee. Guide County Annals[J]. Shanxi: Shanxi People's Publishing House, 1995 [12] Jianzha County Annals Editorial Committee. Jianzha County Annals [J]. Gansu: Gansu People's Publishing House, 2003 [13] Dari County Annals Editorial Committee. Dari County Annals [J]. Shanxi: Shanxi People's Publishing House, 1993 [14] Golmud City Annals Editorial Committee. Golmud City Annals [J]. Beijing: Fangzhi Publishing House, 2005 [15] Delingha City Annals Editorial Committee. Delingha City Annals [J]. Beijing: Fangzhi Publishing House, 2004 [16] Tianjun County Annals Editorial Committee. Tianjun County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [17] Naidong County Annals Editorial Committee. Naidong County Annals [J]. Beijing: China Tibetology Press, 2006 [18] Gulang County Annals Editorial Committee. Gulang County Annals [J]. Gansu: Gansu People's Publishing House, 1996 [19] County Annals Editorial Committee of Akesai Kazak Autonomous County. County Annals of Akesai Kazakh Autonomous County [J]. Gansu: Gansu People's Publishing House, 1993 [20] Minxian County Annals Editorial Committee. Minxian County Annals [J]. Gansu: Gansu People's Publishing House, 1995 [21] Dangchang County Annals Editorial Committee. Dangchang County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [22] Dangchang County Annals Editorial Committee. Dangchang County Annals(Sequel) (1985-2005) [J]. Gansu: Gansu Cultural Publishing House, 2006 [23] Wenxian County Annals Editorial Committee. Wenxian County Annals[J]. Gansu: Gansu Cultural Publishing House, 1997 [24] Kangle County Annals Editorial Committee. Kangle County Annals [J]. Shanghai: Sanlian Bookstore. 1995 [25] County Annals Editorial Committee of Jishishan (Baoan, Dongxiang, Sala) Autonomous County. County Annals of Jishishan (Baoan, Dongxiang, Sala) Autonomous County[J], Gansu: Gansu Cultural Publishing House, 1998 [26] Luqu County Annals Editorial Committee. Luqu County Annals [J]. Gansu: Gansu People's Publishing House, 2006 [27] Zhouqu County Annals Editorial Committee. Zhouqu County Annals [J]. Shanghai: Sanlian Bookstore. 1996 [28] Xiahe County Annals Editorial Committee. Xiahe County Annals [J]. Gansu: Gansu Cultural Publishing House, 1999 [29] Zhuoni County Annals Editorial Committee. Zhuoni County Annals [J]. Gansu: Gansu Nationality Publishing House, 1994 [30] Diebu County Annals Editorial Committee. Diebu County Annals [J]. Gansu: Lanzhou University Press, 1998 [31] Pengxian County Annals Editorial Committee. Pengxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1989 [32] Guanxian County Annals Editorial Committee. Guanxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1991 [33] Wenjiang County Annals Editorial Committee. Wenjiang County Annals [J]. Sichuan: Sichuan People's Publishing House, 1990 [34] Shifang County Annals Editorial Committee. Shifang County Annals [J]. Sichuan: Sichuan University Press, 1988 [35] Tianquan County Annals Editorial Committee. Tianquan County Annals [J]. Sichuan: Sichuan Science and Technology Press, 1997 [36] Shimian County Annals Editorial Committee. Shimian County Annals [J]. Sichuan: Sichuan Cishu Publishing House, 1999 [37] Lushan County Annals Editorial Committee. Lushan County Annals [J]. Sichuan: Fangzhi Publishing House, 2000 [38] Hongyuan County Annals Editorial Committee. Hongyuan County Annals [J]. Sichuan: Sichuan People's Publishing House, 1996 [39] Wenchuan County Annals Editorial Committee. Wenchuan County Annals [J]. Sichuan: Bayu Shushe, 2007 [40] Derong County Annals Editorial Committee. Derong County Annals [J]. Sichuan: Sichuan University, 2000 [41] Baiyu County Annals Editorial Committee. Baiyu County Annals [J]. Sichuan: Sichuan University Press, 1996 [42] Batang County Annals Editorial Committee. Batang County Annals [J]. Sichuan: Sichuan Nationality Publishing House, 1993 [43] Jiulong County Annals Editorial Committee. Jiulong County Annals(Sequel) (1986-2000) [J]. Sichuan: Sichuan Science and Technology Press, 2007 [44] County Annals Editorial Committee of Derung-Nu Autonomous County Gongshan. County Annals of Derung-Nu Autonomous County Gongshan [J]. Beijing: Nationality Publishing House, 2006 [45] Lushui County Annals Editorial Committee. Lushui County Annals [J]. Yunnan: Yunnan People's Publishing House, 1995 [46] Deqin County Annals Editorial Committee. Deqin County Annals [J]. Yunnan: Yunnan Nationality Publishing House, 1997 [47] Yutian County Annals Editorial Committee. Yutian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [48] Cele County Annals Editorial Committee. Cele County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2005 [49] Hetian County Annals Editorial Committee. Hetian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [50] Qiemo County Local Chronicles Editorial Committee. Qiemo County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [51] Shache County Annals Editorial Committee. Shache County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [52] Yecheng County Annals Editorial Committee. Yecheng County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1999 [53] Akto County Local Chronicles Editorial Committee. Akto County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [54] Wuqia County Local Chronicles Editorial Committee. Wuqia County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1995

0 2021-04-09

The ASTER_GDEM dataset of the Tibetan Plateau (2011)

The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.

0 2021-04-09

The dataset of wetland pattern changes on the Tibet Plateau (1970s, 2000s)

Based on the Tibetan Plateau wetland pattern in the 1970s interpreted using the Mire Map of China compiled by the scientific expeditions and the Tibetan Plateau wetland pattern in the 2000s interpreted using Landsat TM (resolution: 30 m) satellite image data, The Mire Map of China in the 1970s was interpreted. Visual interpretation of Landsat TM images from 2006 to 2009: a) Based on the natural zoning of the whole district, the interpretation keys of different wetland types were established with reference to the data obtained by different physical geography units and actual surveys. b) Based on the established interpretation keys, wetlands with an area greater than 10 square kilometers were primarily extracted by artificial visual interpretation method (excluding permanent, seasonal rivers and riverbeds). c) According to the interpretation results in combination with the topographic map (resolution: 90 m) of the study area and the actual situation of the wetland plaque investigation within the study area, the plaque modification and supplementation were artificially carried out. The data of the 1970s were obtained by interpretation of the Mire Map of China compiled by the Tibetan Plateau scientific expeditions of the Changchun Institute of Geography. The wetland data of the 2000s was derived from Landsat TM (resolution: 30 m) satellite image data. The data are of good quality.

0 2021-04-09

Surface DEM for typical glaciers on the Tibetan Plateau (Version 1.0) (2003)

The DEMs of the typical glaciers on the Tibetan Plateau were provided by the bistatic InSAR method. The data were collected on November 21, 2013. It covered Puruogangri and west Qilian Mountains with a spatial resolution of 10 meters, and an elevation accuracy of 0.8 m which met the requirements of national 1:10 000 topographic mapping. Considering the characteristics of the bistatic InSAR in terms of imaging geometry and phase unwrapping, based on the TanDEM-X bistatic InSAR data, and adopting the improved SAR interference processing method, the surface DEMs of the two typical glaciers above were generated with high resolution and precision. The data set was in GeoTIFF format, and each typical glacial DEM was stored in a folder. For details of the data, please refer to the Surface DEMs for typical glaciers on the Tibetan Plateau - Data Description.

0 2020-12-09

Meteorological data of the integrated observation and research station of Ngari for desert environment (2009-2017)

The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.

0 2020-06-24