Meteorological data of the integrated observation and research station of Ngari for desert environment (2009-2017)

The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.

0 2020-06-24

Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".

0 2020-06-23

The precipitation dataset of the Third Pole region (1951-2010)

The precipitation dataset of the Third Pole region mainly contains two EXCEL files: (1) Daily precipitation data in China in the Third Pole region, named as China_daily.xlsx. The precipitation data in China were obtained from the China Meteorological Administration-National Meteorological Information Center (http://data.cma.gov.cn/site/index.html). (2) Daily precipitation data in other countries in the Third Pole region, named as Foreign_daily.xlsx. The precipitation data in other countries were obtained from NCDC International Climatic Data Center - NOAA Satellite Information Service Center (http://www7.ncdc.noaa.gov/CDO/country), Pakistan Meteorological Administration, Nepal Meteorological Administration, etc. There are seven variables in these two EXCEL data files: precipitation, corrected precipitation, correction factor, wind-induced loss, evaporation loss, wet loss, and trace precipitation. The detail characteristics of TPE stations were described in an EXCEL file either, named as "TPE station and gauge type.xls". The raw data has been strictly quality controlled by the relevant meteorological departments and has been applied in relevant academic papers.

0 2020-06-17

The data set is NDVI data of long time series acquired by NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensor. The time range of the data set is from 1982 to 2015. In order to remove the noise in NDVI data, maximum synthesis and multi-sensor contrast correction are carried out. A NDVI image is synthesized every half month. The data set is widely used in the analysis of long-term vegetation change trend. The data set is cut out from the global data set, so as to carry out the research and analysis of the source areas of the three rivers separately. The data format of this data set is GeoTIFF with spatial resolution of 8 km and temporal resolution of 2 weeks, ranging from 1982 to 2015. Data transfer coefficient is 10000, NDVI = ND/10000.

0 2020-06-15

Permafrost map along at the 1:600 000 in the Tibet Highway (1983)

The data are a digitized permafrost map along the Qinghai-Tibet Highway (1:600,000) (Boliang Tong, et al. 1983), which was compiled by Boliang Tong, shude Li, Jueying bu, and Guoqing Qiu from the Cold and Arid Regions Environmental and Engineering Research Institute of the Chinese Academy of Sciences (originally called the Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences) in 1981. The map aims to reflect the basic laws of permafrost distribution along the highway and its relationship with the main natural environmental factors. The basic data for the compilation of the map include hydrogeological and engineering geological survey results and maps along the Qinghai-Tibet Highway(1:200000) (First Hydrogeological Engineering Geological Brigade of Qinghai Province, Institute of Geomechanics of the Academy of Geological Science), the cryopedological research results of the Institute of Glaciology and Cryopedology of Chinese Academy of Sciences since 1960 in nine locations along the Qinghai-Tibet Highway (West Datan, Kunlun pass basin, Qingshuihe, Fenghuohe, Tuotuohe, the Sangma Basin, Buquhe, Tumengela, and Liangdaohe) and drilling data of the Golmud-Lhasa oil pipeline and aerial topographic data of the work area. Taking the 1:200000 topographic map as the working base map, a permafrost map was compiled, which was then downscaled to a 1:600000 map to ensure the accuracy of the map. To make up for the lack of data in a larger area along the line, the characteristics and principles of the frozen soils found in the nine frozen soil research points along the highway were applied to areas with the same geologic and geographical conditions; meanwhile, aerial photographs were used as supplements to the freeze-thaw geology and frozen soil characteristics. The permafrost map along the Qinghai-Tibet Highway (1:600,000) includes the annual average temperature contour map along the Qinghai-Tibet Highway (1:7,200,000) and the permafrost map along the Qinghai-Tibet Highway (1:600,000). The permafrost map along the Qinghai-Tibet Highway also contains information on permafrost types, lithology, frozen soil phenomena, types of through-melting zones, classification of frozen soil engineering, and geological structural fractures. These data contain only digitized permafrost information. The spatial coverage is from Daxitan on the Qinghai-Tibet Highway in the north to Sangxiong in the south and is nearly 800 kilometers long and 40-50 kilometers wide. The data set includes a vectorized and a scanned map of the permafrost map along the Qinghai-Tibet Highway. The attribute information of the map is as follows. A-1; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer A-2; Continuous permafrost; 0~-0.5°C; 0-25 m A-3; Continuous permafrost; -0.5~-1.5°C; 25-60 m A-4; Continuous permafrost; -1.5~-3.5°C; 60-120 m A-5;Continuous permafrost;<-3.5°C;>120 m B-1; Island permafrost ground; Seasonal Frozen Ground; B-2; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer B-3; Island permafrost extent; 0~-0.5°C; 0-25 m B-4; Island permafrost extent; -0.5~-1.5°C; 25-60 m B-5; Island permafrost extent; -1.5~-3.5°C; 60-120 m

0 2020-06-09

Oxygen Isotope, dust, anion and accumulation data from the Dunde Ice Core (1987)

This data set contains data from the three ice cores drilled from the Dunde ice cap in the northern Tibetan Plateau in 1987. Core D-1 has a length of 139.8 m and is divided into 3585 samples for isotope analysis. Core D-3 has a length of 138.4 m, and the upper 56 m was cut into several samples on site and stored in bottles after melting, while the remaining length was frozen and preserved. The data set contains three data tables, namely, 10-year mean oxygen isotope data for the Dunde ice core (520-1987 A.D.), 5-year mean water equivalent accumulation data for Dunde ice core and 10-year mean dust data for the Dunde ice core. Data source: National Centers for Environmental Information (http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core). Processing method: Average. Table 1: 10-year mean oxygen isotope data for core D-3 (520 - 1987 A.D.) a. Name explanation Field 1: Start time Field 2: End time Field 3: Oxygen isotope value b. Dimensions (units of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: ‰ Data Table 2: 5-year mean water equivalent accumulation data for core D-1 (1606-1984) a. Name explanation Field 1: Start time Field 2: End time Field 3: Accumulation b. Dimensions (units of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: m Data Sheet 3: 10-year mean dust data for core D-3 (520 - 1987 A.D.) a. Name explanation Field 1: Start time Field 2: End time Field 3: Dust (diameter 0.63-16 µm) Field 4: Dust (diameter 2.00-60 µm) Field 5: Cl- Field 6: SO42- Field 7: NO3- b. Dimensions (units of measure) Field 1: Dimensionless Field 2: Dimensionless Field 3: Particles/mL Field 4: Particles/mL Field 5: ppb Field 6: ppb Field 7: ppb

0 2020-06-03

The 7000 years of isotope and geochemical data of the Puruogangri Ice Sheet (2000)

This data set comprises the oxygen isotope and geochemical data of two deep-drilled ice cores drilled in the Puruogangri ice sheet (33°55'N, 89°05'E, altitude: 6070 meters) in the central Tibetan Plateau in 2000. The ice core depths are 118.4 and 214.7 meters, respectively. Source of the data: National Centers for Environmental Information (http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core) . The data set contains 6 tables, which are the average values of 1 oxygen isotope per meter of the Puruogangri ice core, the 10-year average data of 1 oxygen isotope of the Puruogangri ice core, the average values of 2 oxygen isotope and the soluble aerosol concentrations per meter of the Puruogangri ice core, the 5-year average data of 2 oxygen isotope and aerosol concentrations of Puruogangri ice core, 10-year average data of 2 oxygen isotope and aerosol concentrations of the Puruogangri ice core, and the 100-year average values of 2 oxygen isotopic and aerosol concentrations of the Puruogangri ice core. The information on the fields is as follows: Table 1: the average values of 1 oxygen isotope per meter of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Depth [m] Field 2: δ18° [‰] Table 2: the 10-year average data of 1 oxygen isotope of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Start time [Dimensionless] Field 2: End time [Dimensionless] Field 3: δ18° [‰] Table 3: the average values of 2 oxygen isotope and soluble aerosol concentration per meter of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Depth [m] Field 2: Dust (diameter 0.63-20 um) [particles/mL] Field 3: 18° [‰] Field 4: F- [ppb] Field 5: Cl- [ppb] Field 6: SO42- [ppb] Field 7: NO3- [ppb] Field 8: Na+ [ppb] Field 9: NH4+ [ppb] Field 10: K+ [ppb] Field 11: Mg2+ [ppb] Field 12: Ca2+ [ppb] Table 4: the 5-year average data of 2 oxygen isotope and aerosol concentration of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Start time [Dimensionless] Field 2: End time [Dimensionless] Field 3: δ18° [‰] Field 4: Accumulation [cm/yr] Field 5: Dust (diameter 0.63-20 um) [particles/mL] Field 6: F- [ppb] Field 7: Cl- [ppb] Field 8: SO42- [ppb] Field 9: NO3- [ppb] Field 10: Na+ [ppb] Field 11: NH4+ [ppb] Field 12: K+ [ppb] Field 13: Mg2+ [ppb] Field 14: Ca2+ [ppb] Table 5: the 10-year average data of 2 oxygen isotope and aerosol concentrations of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: Start time [Dimensionless] Field 2: End time [Dimensionless] Field 3: δ18° [‰] Field 4: Dust (diameter 0.63-20 um) [particles/mL] Field 5: F- [ppb] Field 6: Cl- [ppb] Field 7: SO42- [ppb] Field 8: NO3- [ppb] Field 9: Na+ [ppb] Field 10: NH4+ [ppb] Field 11: K+ [ppb] Field 12: Mg2+ [ppb] Field 13: Ca2+ [ppb] Table 6: the 100-year average values of 2 oxygen isotopic and aerosol concentrations of the Puruogangri ice core Field: Field Name [Dimensions (Unit of Measure)] Field 1: The last year of the interval [Dimensionless] Field 2: δ18° [‰] Field 3: Dust (diameter 0.63-20 um) [particles/mL] Field 4: F- [ppb] Field 5: Cl- [ppb] Field 6: SO42- [ppb] Field 7: NO3- [ppb] Field 8: Na+ [ppb] Field 9: NH4+ [ppb] Field 10: K+ [ppb] Field 11: Mg2+ [ppb] Field 12: Ca2+ [ppb]

0 2020-06-03

The 30-m land cover data of Tibetan Plateau (2010)

These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) (http://www.globallandcover.com) and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.

0 2020-06-03

The ASTER_GDEM dataset of the Tibetan Plateau (2011)

The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.

0 2020-06-03

The SRTM digital elevation dataset of the Tibetan Plateau (2000)

The SRTM (Shuttle Radar Topography Mission) data were obtained from the Endeavour space shuttle jointly launched by NASA and NIMA in February 2000. The SRTM system on the Endeavour had been collecting data for 222 hours and 23 minutes. It covered more than 80% of the global land surface from 60° north latitude to 56° south Latitude, including the whole territory of China. The radar image data acquired by the program have been processed for more than two years to form a digital terrain elevation model. The raw data of this data set were downloaded from the SRTM data distribution website (http://srtm.csi.cgiar.org). For the convenience of using the data, based on the framing of STRM data, we use Erdas software to splice and prepare the STMR mosaic of the Tibetan Plateau. The accuracy is 30 meters, and the data are in geoTIFF format. The raw data of this data set was downloaded from the SRTM data distribution website (http://srtm.csi.cgiar.org). The SRTM data provides a file for each latitude and longitude square. There are two kinds of longitude files, which are 1 arc-second and 3 arc-second, denoted SRTM1 and SRTM3, or 30-m and 90-m data. This data set comprises SRTM3 data with a resolution of 90 m, and the version is SRTM V4.1 (GeoTIFF format).

0 2020-06-03