Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".

0 2020-03-30

River networks dataset at 1:250 000 in Three Rivers Source Region (2015)

This data comes from the National Catalogue Service for Geographic Information, which was provided to the public free of charge by the National Basic Geographic Information Center in November 2017. We spliced ​​and trimmed Three Rivers Source Region as a whole to facilitate its use in the study of Three Rivers Source Region. The current status of the data is 2015. This dataset is the Three Rivers Source Region 1: 250,000 water system data, including three layers of water system surface (HYDA), water system line (HYDL) and water system point (HYDP). The water system surface (HYDA) includes lakes, reservoirs, double-line rivers, and ditches; the water system line (HYDL) includes single-line rivers, ditches, and river structure lines; and the water system points (HYDP) include springs and wells.         HYDA attribute item name and definition: Attribute item Description Sample GB National standard classification code 210101 HYDC Water system name code KJ2103 NAME Name Heihe WQL Water quality Fresh PERIOD Seasonal months 7-9 TYPE Type Pass          HYDL attribute item name and definition: Attribute item Description Sample GB National standard classification code 210101 HYDC Water system name code KJ2103 NAME Name Heihe PERIOD Seasonal months 7-9          HYDP attribute item name and definition: Attribute item Description Sample GB National standard classification code 210101 NAME Name Unfreezing spring TYPE Type Fresh ANGLE Angle 75           Water system GB code and its meaning:  Attribute item Code Description GB 210101 Ground river 210200 Seasonal river 210300 Dry up river 230101 Lake 230102 Pond 230200 Seasonal lake 230300 Dry lake 240101 Built reservoir 240102 Reservoir in building

0 2020-03-12

Primary road network dataset at 1:250,000 of the Three Rivers Source Region (2015)

This data comes from the National Catalogue Service for Geographic Information, which was provided to the public free of charge by the National Basic Geographic Information Center in November 2017. We spliced ​​and trimmed Three Rivers Source Region as a whole to facilitate its use in the study of Three Rivers Source Region. The current status of the data is 2015. This dataset is 1:25 million traffic data in the Three Rivers Source Region area, including two layers of highway (LRDL) and railway (LRRL). Highways (LRDL) include national, provincial, county, rural, and other highways; railways (LRRL) include standard-gauge, narrow-gauge, subway, and light rail.        Highway (LRDL) attribute item name and definition: Attribute item Description Sample GB National standard classification code 420301 RN Road number X828 NAME Road name Zhuoxiao fork-Baola Peak fork RTEG Road Level 4 TYPE Road type elevated         Meaning of highway attribute items: Attribute item Code Description GB 420101 National road 420102 National road in building 420201 Provincial road 420102 Provincial highway in building 420301 County road 420302 County road in building 420400 Country road 420800 Machine tillage 440100 Simple road 440200 Village road 440300 Trail         Railway (LRRL) attribute item name and definition: Attribute item Description Sample GB National standard classification code 410101 RN Railway number 0907 NAME Railway name Qinghai-Tibet Railway TYPE Rail type

0 2020-03-12

Prokaryotic distribution over the Arctic, Antarctic and Tibetan glaciers V1.0 (2010-2018)

The data set of prokaryotic microorganism distribution in the snow and ice of the Arctic Antarctic and the Tibetan Plateau provides the bacterial 16S ribosomal RNA gene sequence collected by the experimental group led by Yongqin Liu from the NCBI database during 2010 to 2018. The keywords for NCBI database search are Antarctic, Arctic Tibetan, and Glacier. The collected sequences were calculated using the DOTOUR software to obtain the similarities between sequences, the sequences with similarities above 97% were clustered into one OTU, and the OTU representative sequence was defined. The OTU representative sequence was compared with the RDP database by the "Classifier" software and was identified as level one when the reliability exceeded 80%. After acquiring the sequence, the GPS coordinates of the sample were obtained by reading the sample information in the sequence file. These data contain the sequence of 16S ribosomal RNA gene fragments for each sequence, evolutionary classification, and sample GPS coordinates. Compared with sequences based on high-throughput sequencing, these data have a longer sequence and more accurate classification. It is significant for comparing the evolutionary information of three-pole microorganisms and understanding the evolution of psychrophilic microorganisms.

0 2020-01-19

Long-term serial data of snow area on the Tibetan Plateau (2007-2015)

The variation in the duration of snow on the Tibetan Plateau is relatively great, and the high mountainous areas around the plateau are rich in snow and ice resources. Taking full account of the terrain of the Tibetan Plateau and the snow characteristics in the mountains, the data set adopted AVHRR data to gradually realize generating data products for daily, ten-day, and monthly snow cover areas while maintaining the snow classification accuracy. These data included the daily/10-day/monthly snow cover area data for the Tibetan Plateau from 2007 to 2015, the average accuracy of which is 0.92. It can provide reliable data for snow changes during the historical periods of the Tibetan Plateau.

0 2020-01-18

Ice elevation changes for typical glaciers on the QTP V1.0 (2000-2013)

The continuous advancement of SAR interferometry technology makes it possible to obtain multitemporal DEMs with high precision in the glacial area. In particular, in 2000, the Shuttle Radar Topography Mission (SRTM) led by NASA provided DEM data covering the area from 56ºS to 60ºN; the TanDEM-X bistatic SAR interferometry system of DLR could provide the global DEM data with high resolution and precision. These high-quality, large-coverage SAR interferometry data, as well as published DEM data products, provided valuable information for using the multitemporal DEMs to detect changes in ice thickness. The temporal coverage of the ice thickness variation data of typical glaciers on the Tibetan Plateau was from 2000 to 2013, covering Puruogangri and the west Qilian Mountains with a spatial resolution of 30 meters. Using TanDEM-X bistatic InSAR data and a C-band SRTM DEM, the differential radar interferometry method was first used to generate a TanDEM-X DEM with high precision. Then, based on the precise registration of DEM, the DEM data obtained in different periods were compared. Lastly, the ice thickness changes were estimated. The format of the data set was GeoTIFF, and each typical glacier ice thickness change was stored in a folder. For details of the data, please refer to the Ice elevation changes for typical glaciers on the Tibetan Plateau - Data Description.

0 2020-01-18

Bacteria distribution in Tibetan lakes (version 1.0) (2015)

Microbial diversity data of lakes on the Tibetan Plateau. One hundred and thirty-eight samples were collected from July 1st to July 15th, 2015, from 28 lakes (Bamco, Baima Lake, Bange Salt Lake, Bangong Lake, Bengco, Bieruozeco, Cuoeco, Cuoe (Pingcuo North), Dawaco, Dangqiongco, Dangreyongco, Dongco, Eyacuoqiong, Gongzhuco, Guogenco, Jiarebuco, Mapangyongco, Namco, Nieerco (Salt Lake), Normaco, Pengyanco, Pengco, Qiangyong, Selinco, Wuruco, Wumaco, Zharinanmuco, and Zhaxico). The salinity gradients range from 0.07-118 ppm. The DNA extraction method: The DNA was extracted using an MO BIO PowerSoil DNA kit after the lake water was filtered onto a 0.45 membrane. The 16S rRNA gene fragment amplification primers were 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3'). The sequencing method was Illumina MiSeq PE250, and the raw data were analyzed by Mothur software, including quality filtering and chimera removal. The sequence classification was based on the Silva109 database, and archaea, eukaryotic and unknown source sequences have been removed. OTUs were classified by 97% similarity, and sequences that appear once in the database were then removed. Finally, each sample was resampled to 7,230 sequences/sample. GPS coordinates, evolutionary information, and environmental factors are listed in the data.

0 2020-01-16

Meteorological data of the integrated observation and research station of Ngari for desert environment (2009-2017)

The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.

0 2020-01-13

Aerosol optical property dataset of the Tibetan Plateau by ground-based observation (2009-2016)

The measurement data of the sun spectrophotometer can be directly used to perform inversion on the optical thickness of the non-water vapor channel, Rayleigh scattering, aerosol optical thickness, and moisture content of the atmospheric air column (using the measurement data at 936 nm of the water vapor channel). The aerosol optical property data set of the Tibetan Plateau by ground-based observations was obtained by adopting the Cimel 318 sun photometer, and both the Mt. Qomolangma and Namco stations were involved. The temporal coverage of the data is from 2009 to 2016, and the temporal resolution is one day. The sun photometer has eight observation channels from visible light to near infrared. The center wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm. The field angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. According to the direct solar radiation, the aerosol optical thickness of 6 bands can be obtained, and the estimated accuracy is 0.01 to 0.02. Finally, the AERONET unified inversion algorithm was used to obtain aerosol optical thickness, Angstrom index, particle size spectrum, single scattering albedo, phase function, birefringence index, asymmetry factor, etc.

0 2020-01-12

A permafrost thermal type map on the Tibetan Plateau (2000-2010)

The past frozen soil map of the Tibetan Plateau was based on a small number of temperature station observations and used a classification system based on continuity. This data set used the geographically weighted regression model (GWR) to synthesize MODIS surface temperature, leaf area index, snow cover ratio and multimodel soil moisture forecast products of the National Meteorological Information Center through spatiotemporal reconstruction. In addition, precipitation observations of more than 40 meteorological stations, the precipitation products of FY2 satellite observations and the multiyear average temperature observation data of 152 meteorological stations from 2000 to 2010 were integrated to simulate the average temperature data of the Tibetan Plateau, and the permafrost thermal condition classification system was used to classify permafrost into several types: Very cold, Cold, Cool, Warm, Very warm, and Likely thawing. The map shows that, after deducting lakes and glaciers, the total area of permafrost on the Tibetan Plateau is approximately 1,071,900 square kilometers. Verification shows that this map has higher accuracy. It can provide support for future planning and design of frozen soil projects and environmental management.

0 2020-01-12