The data set is NDVI data of long time series acquired by NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensor. The time range of the data set is from 1982 to 2015. In order to remove the noise in NDVI data, maximum synthesis and multi-sensor contrast correction are carried out. A NDVI image is synthesized every half month. The data set is widely used in the analysis of long-term vegetation change trend. The data set is cut out from the global data set, so as to carry out the research and analysis of the source areas of the three rivers separately. The data format of this data set is GeoTIFF with spatial resolution of 8 km and temporal resolution of 2 weeks, ranging from 1982 to 2015. Data transfer coefficient is 10000, NDVI = ND/10000.

0 2020-06-15

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Phenology camera observation data set of Mixed forest superstation-2019)

The dataset contains the phenological camera observation data of the Mixed forest station in the downstream of Heihe integrated observatory network from August 28, 2019 to December 31, 2019. The instrument was developed and data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures data by look-downward with a resolution of 1280×720. For the calculation of the greenness index and phenology, the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) needs to be calculated according to the region of interest, then the invalid value filling and filtering smoothing are performed, and finally the key phenological parameters are determined according to the growth curve fitting, such as the growth season start date, Peak, growth season end, etc. For coverage, first, select images with less intense illumination, then divide the image into vegetation and soil, calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

0 2020-06-12

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Phenology camera observation data set of Sidaoqiao superstation-2019)

The dataset contains the phenological camera observation data of the Sidaoqiao Superstation in the downstream of Heihe integrated observatory network from August 28,2019 to December 31, 2019. The instrument was developed and data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures data by look-downward with a resolution of 1280×720. For the calculation of the greenness index and phenology, the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) needs to be calculated according to the region of interest, then the invalid value filling and filtering smoothing are performed, and finally the key phenological parameters are determined according to the growth curve fitting, such as the growth season start date, Peak, growth season end, etc. For coverage, first, select images with less intense illumination, then divide the image into vegetation and soil, calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

0 2020-06-12

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Phenology camera observation data set of Daman superstation-2019

The dataset contains the phenological camera observation data of the Daman Superstation in the midstream of Heihe integrated observatory network from August 28,2019 to December 31, 2019. The instrument was developed and data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures data by look-downward with a resolution of 1280×720. For the calculation of the greenness index and phenology, the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) needs to be calculated according to the region of interest, then the invalid value filling and filtering smoothing are performed, and finally the key phenological parameters are determined according to the growth curve fitting, such as the growth season start date, Peak, growth season end, etc. For coverage, first, select images with less intense illumination, then divide the image into vegetation and soil, calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc), phenological period and coverage (Fc). Please refer to Liu et al. (2018) for sites information in the Citation section.

0 2020-06-12

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Phenology camera observation data set of Arou superstation-2019

The dataset contains the phenological camera observation data of the Arou Superstation in the midstream of Heihe integrated observatory network from August 28, 2019 to December 31, 2019. The instrument was developed and data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures data by look-downward with a resolution of 1280×720. For the calculation of the greenness index and phenology, the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) needs to be calculated according to the region of interest, then the invalid value filling and filtering smoothing are performed, and finally the key phenological parameters are determined according to the growth curve fitting, such as the growth season start date, Peak, growth season end, etc. For coverage, first, select images with less intense illumination, then divide the image into vegetation and soil, calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

0 2020-06-12

Basic dataset of biodiversity along "The Belt and Road"(1900-2010)

The basic data set of biodiversity along "The Belt and Road" has integrated authoritative data platforms, such as GBIF, NSII, and Chinese plant species information database. Data content in those database of the countries along "The Belt and Road" has been extracted. And research records in the historical literature has also been integrated. All scientific name was checked according to Catalog of Life, the data were scientifically cleaned and integrated. A total of 120 million historical distribution data were obtained, including species distribution, specimen site information, etc. The data sevice page was developed and released through http://pantpe.cn.

0 2020-06-11

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Leaf area index of Daman Superstation, 2019)

This dataset contains the LAI measurements from the Daman superstation in the middle reaches of the Heihe integrated observatory network from June 1 to September 20 in 2019. The site (100.376° E, 38.853°N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. There are 7 observation samples, each of which is about 30m×30m in size, and the latitude and longitude are (100.376°E, 38.853°N)、(100.377° E, 38.858°N)、(100.374°E, 38.855°N)、(100.374°E, 38.858°N)、(100.371°E, 38.854°N)、(100.369°E, 38.854°N)、(100.369°E, 38.854°N). Five sub-canopy nodes and one above-canopy node are arranged in each sample. The data is obtained from LAINet measurements; the four-steps are performed to obtain LAI: the raw data is light quantum (level 0); the daily LAI can be obtained using the software LAInet (level 1); further the invalid and null values are screened and using the 7 days moving averaged method to obtain the processed LAI (level 2); for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.

0 2020-06-11

The data of material and energy exchange and community stability of soil plant gas interface in Oasis Gobi transitional zone

The project of material and energy exchange and community stability of soil-plant gas interface in oasis-gobi transition zone belongs to the major research program of "environmental and ecological science in western China" sponsored by the national natural science foundation, and is headed by professor Wang genxuan of Lanzhou university. the running time of the project is from January 2002 to December 2004. Data collected for this project: 1. Status of energy utilization rate of desert natural vegetation The data is in Excel format. The individual size of plants and biomass of green photosynthetic tissue measured by randomly selecting some plants from the desert natural vegetation sample are mainly used to explore the energy utilization rate model of desert plants in this project, including variables such as average total biomass, average biomass of photosynthetic tissue and population density. 2. Survey data on basic information of natural vegetation community institutions in sample plots The data is in Excel format, including survey and analysis data of vegetation density and average underground biomass in Lanzhou, Baiyin and Jingtai.

0 2020-06-09

Data of interaction mechanism between major road projects and environment in western mountainous areas project

The interaction mechanism project between major road projects and the environment in western mountainous areas belongs to the major research plan of "Environment and Ecological Science in Western China" of the National Natural Science Foundation. The person in charge is Cui Peng researcher of Chengdu Mountain Disaster and Environment Research Institute, Ministry of Water Resources, Chinese Academy of Sciences. The project runs from January 2003 to December 2005. Data collected for this project: Engineering and Environmental Centrifugal Model Test Data (word Document): Consists of six groups of centrifugal model test data, namely: Test 1. Centrifugal Model Test of Soil Cutting High Slope (6 Groups) Test 2. Centrifugal Model Experiment of Backpressure for Slope Cutting and Filling (4 Groups) Test 3. Centrifugal Model Experimental Study on Anti-slide Piles and Pile-slab Walls (10 Groups) Test 4. Centrifugal Model Tests for Different Construction Timing of Slope (5 Groups) Test 5. Migration Effect Centrifugal Model Test (11 Groups) Test 6. Centrifugal Model Test of Water Effect on Temporary Slope (8 Groups) The purpose, theoretical basis, test design, test results and other information of each test are introduced in detail.

0 2020-06-09

The vegetation map at the 1:4,000,000 of China (1979)

This dataset: Editor-in-Chief: Hou Xueyu Drawing: Hou Xueyu, Sun Shizhou, Zhang Jingwei, He Miaoguang. Wang Yifeng, Kong Dezhen, Wang Shaoqing Publishing: Map Press Issue: Xinhua Bookstore Year: 1979 Scale: 1: 4,000,000 It took five years to complete from May 1972 to July 1976. In the process of drawing legends and mapping, referring to the vast majority of vegetation survey data (including maps and texts) after 1949 in China, we held more than a dozen mapping seminars involving researchers from inside and outside the institute. During the layout after the mapping work was completed, many new survey data were added, especially vegetation data in western Tibet. The nature of this map basically belongs to the current vegetation map, including two parts of natural vegetation and agricultural vegetation. The legend of natural vegetation is arranged according to the seven vegetation groups. They are mainly divided according to the appearance of plant communities and certain ecological characteristics. The concept of agricultural vegetation community, like the natural vegetation community, also has a certain life form (appearance, structure, layer), species composition and a certain ecological location. In 1990, the State Key Laboratory of Resources and Environmental Information Systems of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences completed the digitization of this map, and wrote relevant data description documents. The digitized data also adopt equal product cone projection and can be converted into other projections by GIS software. This data includes a vector file in e00 format, a Chinese vegetation coding design description, a dataset description, a vegetation data layer attribute data table, and a scanned "People's Republic of China Vegetation Map-Brief Description" and other files. Data projection: Projection: Albers false_easting: 0.000000 false_northing: 0.000000 central_meridian: 110.000000 standard_parallel_1: 25.000000 standard_parallel_2: 47.000000 latitude_of_origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Unknown Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Unknown Spheroid: Clarke_1866 Semimajor Axis: 6378206.400000000400000000 Semiminor Axis: 6356583.799999999800000000 Inverse Flattening: 294.978698213901000000

0 2020-06-09