SRTM DEM data on the Tibetan Plateau (2012)

This data set is mainly the SRTM terrain data obtained by International Center for Tropical Agriculture (CIAT)with the new interpolation algorithm, which better fills the data void of SRTM 90. The interpolation algorithm was adpoted from Reuter et al. (2007). SRTM's data organization method is as follows: divide a file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) in every 5 degrees of latitude and longitude grid, and the data resolution is 90 meters. Data usage: SRTM data are expressed as elevation values with 16-bit values (-/+/32767 m), maximum positive elevation of 9000m, and negative elevation (12000m below sea level). For null data use the -32767 standard.

0 2021-08-02

The 30-meter resolution product of suspended solids concentration in the water body of the Qinghai-Tibet Plateau (2018)

Data content: the data set product contains the 30-meter resolution product of suspended solids concentration in the water body of the Qinghai-Tibet Plateau, which can be used as the key parameters for ecosystem-related research in Qinghai-Tibet Plateau. Data sources and processing methods: Product inversion is mainly based on the Landsat series data, by extracting the effective aquatic reflectance, to obtain the water composition information. This product is the preliminary result of extracting the concentration information of suspended solids in water using the empirical / semi-empirical method. Data quality: the overall accuracy is high, and the product will be further optimized in combination with the measured data of scientific research. Results and prospects of data application: the data set will be continuously updated and can be used for the study and analysis of ecosystem change in the Qinghai-Tibet Plateau.

0 2021-07-07

Normalized Difference Vegetation Index (NDVI) dataset of Tibetan Plateau (1982-2015)

The data set is based on NDVI 3G calculated by GIMMS AVHRR sensor data, which represents the greenness of vegetation. The source data range is global, and the Qinghai Tibet plateau region is selected in this data set. This data integrates the original semi monthly scale data into the monthly data. The processing method is to take the maximum value of two NDVI of a month to achieve the effect of noise removal as far as possible. This data set is one of the most widely used NDVI data, and is often used to evaluate the temporal and spatial patterns of vegetation greenness, which has practical significance and theoretical value.

0 2021-07-06

30 m land cover classification product data set of Qilian Mountain Area in 2020 (V2.0)

This dataset contains land cover products in Qilian Mountain Area in 2020. The dataset was produced based on the product in 2019 using change monitoring method on the Google Earth Engine platform using Landsat series data. The overall accuracy of this product is above 85%. This is a continuation of the products from 1985-2019.

0 2021-06-25

Product data set of 30 m human activity parameters in Qilian Mountain Area in 2020 (V2.0)

This data set includes 30 m cultivated land and construction land distribution products in Qilian Mountain Area in 2020. The product comes from the land cover classification product of 30 m in Qilian Mountain Area in 2020. The land cover classification products of 30m in 2020 areproduced using change detection method based on the land cover classification product of 2019 in Google Earth engine platform with the Landsat series data . The overall accuracy of the product is better than 85%. This product is a continuation of the human activity parameter product from 1985 to 2019,which also can be downloaded from this website.

0 2021-06-25

Reasonable livestock carrying capacity estimation product of grassland in Qinghai-Tibet Plateau (2000-2019)

Reasonable carrying capacity, also known as theoretical carrying capacity, refers to the maximum number of domestic animals that can be carried by a certain grassland area in a certain period of time under the premise of moderate grazing (or mowing) and maintaining sustainable production of grassland to meet the needs of normal growth, reproduction and production of livestock. Based on the MODIS inversion data of forage yield (fresh weight, kg / hm2), the reasonable carrying capacity of grassland (sheep unit, mu / km2) was evaluated according to the code for calculation of grassland carrying capacity and grass livestock balance (DB 51 / t1480-2012) and calculation of reasonable carrying capacity of natural grassland (NY / T 635-2015), The time series is 2000-2019, and the spatial resolution is 250m. This data set can analyze the temporal and spatial variation characteristics of the theoretical carrying capacity under the condition of rational utilization of grassland in the Qinghai Tibet Plateau, evaluate the carrying capacity characteristics of grassland in the Qinghai Tibet Plateau, and extract the overgrazing areas, which has important application value for ecological protection, monitoring and early warning of the Qinghai Tibet Plateau.

0 2021-06-17

Grassland yield estimation product in Qinghai-Tibet Plateau (2000-2019)

Grassland yield is an important ecological parameter of grassland, which is an important basis for monitoring grassland productivity, Estimating Grassland reasonable carrying capacity and evaluating grassland carrying status. Based on the grassland data collected in July and August, MODIS NDVI, precipitation and terrain parameters, multivariate statistical equations were established to invert the total grass yield (kg / hm2) and edible grass yield (kg / hm2). The time series is 2000-2019, and the spatial resolution is 250 meters. Based on the data of 50 quadrats distributed in Sichuan, Tibet, Qinghai, Gansu and other regions, the results show that the average absolute error of total grass yield is 734.75kg/hm2, and the average relative error is 24.85%. The average absolute error of edible grass yield is 715.81kg/hm2, and the average relative error is 30.52%. Due to the complexity of grassland types, high spatial heterogeneity and scale mismatch between the measured grassland quadrats and MODIS image pixels, this accuracy can meet the requirements of remote sensing monitoring of grassland in large areas. This data set can analyze the spatiotemporal variation characteristics of grassland productivity in the Qinghai Tibet Plateau, evaluate the carrying capacity characteristics of grassland in the Qinghai Tibet Plateau, and extract the overgrazing areas, which has important application value for ecological protection, monitoring and early warning of the Qinghai Tibet Plateau.

0 2021-06-17

Actual livestock carrying capacity estimation product in Qinghai-Tibet Plateau (2000-2019)

The actual carrying capacity refers to the number of livestock in a certain area of grassland in a certain period of time. The actual carrying capacity is obtained from the statistical yearbooks of the provinces (autonomous regions) and cities (prefectures) of the Qinghai Tibet Plateau and the statistical data provided by the animal husbandry management departments. In the statistical data, there are a variety of statistical dimensions, such as the number of stocks on hand, the number of stocks on hand, the ratio of stocks on hand, and the number of livestock at the end of the year, etc. Based on the multivariate linear regression between the actual livestock carrying capacity and population density, NPP and topographic relief in the statistical yearbook, the spatial model of actual livestock carrying capacity was established, and the grid data of actual livestock carrying capacity (sheep unit, mu / km2) was obtained. The time series was from 2000 to 2019, and the spatial resolution was 250 meters. Using the statistical data of Guoluo, Yushu, Changdu, Naqu, ABA, Ganzi and Gannan in the core pastoral areas of the Qinghai Tibet Plateau, the results show that the average absolute error of spatialization is 27.48 mu / km2, and the average relative error is 13.79%. This data set can analyze the temporal and spatial variation characteristics of the actual livestock carrying capacity of the Qinghai Tibet Plateau, evaluate the grassland carrying capacity characteristics of the Qinghai Tibet Plateau, and extract the overgrazing areas, which has important application value for ecological protection, monitoring and early warning of the Qinghai Tibet Plateau.

0 2021-06-17

Livestock carrying state estimation product in Qinghai-Tibet Plateau (2000-2019)

Carrying capacity refers to the carrying capacity of grassland calculated by actual carrying capacity and reasonable carrying capacity, that is, all overloading, balanced and non overloading. This data set includes two products: Grassland carrying capacity pressure index and grassland livestock balance index. Grassland carrying capacity pressure index = actual carrying capacity / reasonable carrying capacity, and grassland livestock balance index = (actual carrying capacity - reasonable carrying capacity) × 100% / reasonable carrying capacity, the actual carrying capacity data comes from the Qinghai Tibet Plateau actual carrying capacity data set (2000-2019), and the reasonable carrying capacity data comes from the Qinghai Tibet Plateau reasonable carrying capacity data set (2000-2019). This data set can analyze the temporal and spatial variation characteristics of livestock carrying status in the Qinghai Tibet Plateau, extract overgrazing areas, and evaluate the overload intensity of the Qinghai Tibet Plateau, which has important application value for ecological protection, monitoring and early warning of the Qinghai Tibet Plateau.

0 2021-06-17

Water index in the Qilian Mountain Area in 2020

This dataset contains the ground surface water (including liquid water, glacier and perennial snow) distribution in Qilian Mountain Area in 2020. The dataset was produced based on classical Normalized Difference Water Index (NDWI) extraction criterion and manual editing. Landsat images collected in 2020 were used as basic data for water index extraction. Sentinel-2 images and Google images were employed as reference data for adjusting the extraction threshold. The dataset was stored in SHP format and attached with the attributions of coordinates and water area. Consisting of 1 season, the dataset has a temporal resolution of 1 year and a spatial resolution of 30 meters. The accuracy is about 1 pixel (±30 meter). The dataset directly reflects the distribution of water bodies within the Qilian Mountain in 2020, and can be used for quantitative estimation of water resource.

0 2021-06-17