Data content: precipitation data of the Aral Sea basin from 2015 to 2018. Data sources and processing methods: from the new generation of global precipitation measurement (GPM) of NASA (version 06, global precipitation observation program), the daily rainfall can be obtained by adding the three-hour rainfall data, and then the eight day rainfall can be obtained. Data quality: the spatial resolution is 0.1 ° x 0.1 ° and the temporal resolution is 8 days. The value of each pixel is the sum of rainfall in 8 days. Data application results: under the background of climate change, it can be used to analyze the correlation between meteorological elements and vegetation characteristics.

0 2021-02-23

HiWATER: Simultaneous continuous observation dataset of differential GPS with LiDAR and WIDAS airborne flying in the middle and upper reaches of the Heihe River Basin in 2012

During lidar and widas flight in summer 2012, the ground synchronously carried out the continuous observation of differential GPS of ground base station, and obtained the synchronous GPS static observation data, which is used to support the synchronous solution of aviation flight data. Measuring instrument: Two sets of triple R8 GNSS system. Zgp8001 sets Time and place of measurement: On July 19, 2012, EC matrix lidar flew and observed at mjwxb (northwest of Maojiawan) and sbmz (shibamin) two base stations at the same time On July 25, 2012, lidar of hulugou small watershed and tianmuchi small watershed in the upper reaches flew, observed in XT Xiatang, lidar of Zhangye City calibration field in the middle reaches, and observed in mjwxb (northwest of Maojiawan) On July 26, 2012, lidar flight of hulugou small watershed and tianmuchi small watershed in the upper reaches was observed in XT Xiatang, lidar flight of Zhangye City calibration field in the middle reaches was observed in HCZ (railway station) On August 1, 2012, the upper east and West branches of widas flew and observed in yng (yeniugou) On August 2, 2012, the midstream EC matrix test area widas flew and observed in HCZ (railway station) On August 3, 2012, the midstream EC matrix test area widas flew and observed in mjwxb (northwest Maojiawan) Data format: Original data format before differential preprocessing.

0 2020-03-14

HiWATER: Vegetation Height product in the middle of the Heihe River Basin on July. 19, 2012

In July 19, 2012 (UTC+8), the airborne LIDAR data is acquired in the foci area in the Heihe,middle reaches, which can provide high spatial resolution (m) and high precision (20 cm) of the surface elevation information. Based on airborne LIDAR data processing, the land surface DEM, DSM and point cloud density map were generated. By subtracting DSM and DEM directly, a Vegetation height product in the middle reaches of the Heihe River Basin was obtained. The product overall accuracy is 88%.

0 2019-09-15

HiWATER: Airborne LiDAR-DEM data production in the middle reaches of the Heihe River Basin on July. 19, 2012

On 19 July 2012 (UTC+8), Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. The relative flight altitude is 1500 m (the elevation of 2700 m). Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm with the point cloud density 4 points per square meter. Based on the original Airborne LiDAR-DEM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

0 2019-09-15

HiWATER: Airborne LiDAR raw data in the middle reaches of the Heihe River Basin

On 19 July 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The relative flight altitude is 1500 m (the elevation of 2700 m) with the point cloud density 4 points per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

0 2019-05-23