Daily standard weather station dataset in Sanjiangyuan region (1981-2015)

The files in this data set are named as: 1. Pressure of the station: SURF_CLI_CHN_MUL_DAY-PRS-10004-SITEID.TXT 2. Temperature: SURF_CLI_CHN_MUL_DAY-TEM-12001-SITEID.TXT 3. Relative humidity: SURF_CLI_CHN_MUL_DAY-RHU-13003-SITEID.TXT 4. Precipitation: SURF_CLI_CHN_MUL_DAY-PRE-13011-SITEID.TXT 5. Evaporation: SURF_CLI_CHN_MUL_DAY-EVP-13240-SITEID.TXT 6. Wind direction and wind speed: SURF_CLI_CHN_MUL_DAY-WIN-11002-SITEID.TXT 7. Sunshine: SURF_CLI_CHN_MUL_DAY-SSD-14032-SITEID.TXT 8.0cm Ground Temperature: SURF_CLI_CHN_MUL_DAY-GST-12030-0cm-SITEID.TXT Detailed format descriptions for each data file are given in the SURF_CLI_CHN_MUL_DAY_FORMAT.doc file. The meteorological site information contained in this data set is as follows: Site_id lat lon ELV name_En 52754 37.33 100.13 8301.50 Gangcha 52833 36.92 98.48 7950.00 Uran 52836 36.30 98.10 3191.10 Dulan 52856 36.27 100.62 2835.00 Chabcha 52866 36.72 101.75 2295.20 Xining 52868 36.03 101.43 2237.10 Guizhou 52908 35.22 93.08 4612.20 Wu Daoliang 52943 35.58 99.98 3323.20 Xinghai 52955 35.58 100.75 8120.00 Guinan 52974 35.52 102.02 2491.40 Tongren 56004 34.22 92.43 4533.10 Toto River 56018 32.90 95.30 4066.40 Zaduo 56021 34.13 95.78 4175.00 Qumalai 56029 33.02 97.02 3681.20 Yushu 56033 34.92 98.22 4272.30 Maddo 56034 33.80 97.13 4415.40 Qingshui River 56038 32.98 98 98.10 9200.00 Shiqu 56 043 34.47 100.25 3719.00 Golo 56 046 33.75 99.65 3967.50 Dari 56065 34.73 101.60 8500.00 Henan 56 067 33.43 101.48 3628.50 Jiuzhi 56074 34.00 102.08 3471.40 Marqu 56080 35.00 102.90 2910.00 Hezuo 56106 31.88 93.78 4022.80 Suoxian 56116 31.42 95.60 3873.10 Ding Qing 56125 32.20 96.48 3643.70 Xiangqian 56128. 31.22. 96.60. 3810.00 Leiwuqi 56 137 31.15 97.17 3306.00 Changdu 56151 32.93 100.75 8530.00 Banma 56152 32.28 100.33 8893.90 Saida

0 2020-06-23

National annual average surface temperature and freezing index by remote sensing (2008)

The 2008 national remote sensing annual average surface temperature and freezing index is a 5 km instantaneous surface temperature data product based on MODIS Aqua/Terra four times a day by Ran Youhua et al. (2015). A new method for estimating the annual average surface temperature and freezing index has been developed. The method uses the average daily mean surface temperature observed by LST in morning and afternoon to obtain the daily mean surface temperature. The core of the method is how to recover the missing data of LST products. The method has two characteristics: (1) Spatial interpolation is carried out on the daily surface temperature variation observed by remote sensing, and the spatial continuous daily surface temperature variation obtained by interpolation is utilized, so that satellite observation data which is only once a day is applied; (2) A new time series filtering method for missing data is used, that is, the penalty least squares regression method based on discrete cosine transform. Verification shows that the accuracy of annual mean surface temperature and freezing index is only related to the accuracy of original MODIS LST, i.e. the accuracy of MODIS LST products is maintained. It can be used for frozen soil mapping and related resources and environment applications.

0 2020-06-03

Great lakes in Central Asia-Basic dataset-climate-2016

Meteorological data is a group of data reflecting the weather, which can be divided into climate data and weather data. This data set mainly includes the rainfall data and temperature data in the meteorological data (pre represents rainfall and T2 represents temperature in the data set). This data set is from the CRU (climate research unit) global grid data provided by the University of East Anglia in the UK (http://www.cgiar-csi.org/). Cru data set is obtained by interpolating the data of 365 observation stations in Central Asia, which has high accuracy in Central Asia. This data set uses CRU to obtain rainfall and temperature data of five Central Asian countries through ArcGIS batch cutting. Data format: GeoTIFF; spatial resolution: 0.5 °; time scale: Monthly Scale. The meteorological data is widely used and can be integrated with resources in different fields. It plays an important role in the development and construction of transportation, new energy, agriculture, mobile Internet software development and service, public management, smart city based on big data technology, smart transportation, smart food and other fields.

0 2020-06-01

Observation of water and heat flux in alpine meadow ecosystem —automatic weather station of E’bao station (2015-2016)

The data set contains the meteorological element observation data of ebao station in the upper reaches of heihe hydrometeorological observation network on January 1, 2015 and December 31, 2016.The station is located in ebao town, qilian county, qinghai province.The longitude and latitude of the observation point are 100.9151E, 37.9492N, and the altitude is 3294m.The air temperature and relative humidity sensor is set up at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe is buried at the surface of 0cm and underground of 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil moisture probe is buried underground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil heat flow plates (3 pieces) are successively buried 6cm underground, 2m south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.The four-component radiation and infrared temperature were between October 11, 2015 and November 5, 2015.The instrument of the observation tower was re-adjusted between 11.1 and 11.5, and the data was missing;(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).

0 2020-06-01

Basic data set for water resources research in Southeast Asian countries andLancang-Mekong River Basin (1901-2010)

The basic data set of water resources research of Southeast Asian countries and Lancang Mekong basin (1901-2010) collected and sorted out the main hydrometeorological data of Southeast Asian countries and Lancang Mekong basin, including precipitation, average temperature, maximum temperature, minimum temperature, water vapor pressure, etc. the data came from CRU TS v. 4.03 (clinical research unit time series version 4.03), which is widely used in the whole world The format is NC, the time resolution is month by month, and the time length is from January 1901 to December 2018. Hydrological data includes surface runoff and underground runoff simulated by the hydrological model. The data comes from GLDAS (Global Land Data Assimilation System). The data format is NC, the time resolution is month by month, and the time length is from January 1979 to February 2019.

0 2020-04-09

China meteorological forcing dataset (1979-2018)

The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.

0 2020-04-01

Standardized dataset on surface temperature for performance assessment of climate models in the great lakes region of central Asia (1850 --2014)

1) Data content: including the central Asian region, the regional scope: 30°N ~ 60°N, 40°E ~ 90°E; 2) Data source: process the CMIP data set and use bilinear interpolation to interpolate the data of different resolution modes to 0.5°× 0.5°,CRU observation data from 1901 to 2014;; 3) Data quality: the time length is long, the data quality is good, and the missing values are marked by 999; 3) Prospect of data application achievement set: the data has been used to evaluate the simulation capability of temperature in central Asia, and the capability of climate system model to simulate historical climate change in central Asia has been evaluated through calculation and analysis of regional mean, relative error, root-mean-square error, Taylor diagram, EOF. 4) data reliability: by comparing and analyzing the annual changes of the observed and simulated data, the data results show a significant warming trend. By carrying out correlation test on the data results, they all pass the 99% reliability test.At the same time, CMIP plan data and CRU data are also common data sets, which are often used in many studies on climate change.

0 2020-03-29

Dataset of 0.01° Surface Air Temperature over Tibetan Plateau (2000-2015)

The surface air temperature dataset of the Tibetan Plateau is obtained by downscaling the China regional surface meteorological feature dataset (CRSMFD). It contains the daily mean surface air temperature and 3-hourly instantaneous surface air temperature. This dataset has a spatial resolution of 0.01°. Its time range for surface air temperature dataset is from 2000 to 2015. Spatial dimension of data: 73°E-106°E, 23°N-40°N. The surface air temperature with a 0.01° can serve as an important input for the modeling of land surface processes, such as surface evapotranspiration estimation, agricultural monitoring, and climate change analysis.

0 2020-03-19

Dynamic downscaled daily 9 km precipitation and near-surface air temperature over the Pan Third Pole region (2000-2010)

The data include daily precipitation (Precip) amount and daily mean near-surface air temperature (T2M) over the Pan Third Pole region. The data is downscaled by using the Weather Research and Forecasting (WRF) model (3.7.1). The boundary and initial condition come from the fifth-generation global reanalysis product by the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5. The seasonal cycle and summer mean of precipitation over Tibet is well reproduced in comparison to the in situ observations.

0 2020-03-18

Simulated meteorological forcing data of three kilometers and six hours in Heihe River basin (2011-2016)

In east Asia, institute of atmospheric physics, Chinese Academy of Sciences key laboratory of regional climate and environment development of regional integration environment with independent copyright system model RIEMS 2.0, on the basis of the regional climate model RIEMS 2.0 in the United States center for atmospheric research and the development of the university of binzhou mesoscale model (MM5) is a static dynamic framework, coupled with some physical processes needed for the study climate solutions.These processes include the biosphere - atmosphere transmission solutions, using FC80 closed Grell cumulus parameterization scheme, MRF planetary boundary condition and modify the CCM3 radiation, such as the heihe river basin observation and remote sensing data of important parameters in the model for second rate, USES the heihe river basin vegetation data list data of land use in 2000 and 30 SEC DEM data in heihe river basin, build up suitable for the study of heihe river basin ecological - hydrological processes of the regional climate model. Drive field: ERA-INTERIM reanalysis data Spatial scope: the grid center of the simulation area is located at (40.30n, 99.50e), the horizontal resolution is 3 km, and the number of simulated grid points in the model is 161 (meridional) X 201 (zonal). Projection: LAMBERT conformal projection, two standard latitudes of 30N and 60N. Time range: from January 1, 2011 to December 31, 2016, with an interval of 6 hours Description of file contents: monthly storage by grads without format.Except the maximum and minimum temperature as the daily scale, the other variables are all 6-hour data. MATLAB can be used to read, visible tmax_erain_xiong_heihe.m file description. Data description of heihe river basin: 1) Anemometer west wind (m/s) college usurf for short 2) Anemometer south wind(m/s), vsurf for short College 3) Anemometer temperature (deg) K tsurf College 4) maximal temperature (deg) K tmax 5) minimal temperature (deg K) abbreviated as tmin 6) college Anemom specific humidity (g/kg) college qsurf for short 7) value (mm/hr) is simply value p College 8) Accumulated evaporation (mm/hr) evap 9) sensible heat (watts/m**2/hr) for short College 10) Accumulated net infrared radiation (watts/m * * 2 / hr) netrad for short College definition file name: -erain-xiong. Month and year

0 2020-03-11