Snow cover data of the Qinghai Tibet Plateau

The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2017 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format. The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.

0 2019-11-27

Glacier temperature dataset of Xiaodong Kemadi (2012-2015)

This is the daily temperature observation data set of 6 points in Xiaodong Kemadi, 4 points in Yangbajing, and 4 points in Hariqin during 2012-2015.

0 2019-11-22

China meteorological forcing dataset (1979-2018)

The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.

0 2019-11-19

A monthly air temperature and precipitation gridded dataset on 0.025° spatial resolution in China during(1951-2011)

Gridded climatic datasets with fine spatial resolution can potentially be used to depict the climatic characteristics across the complex topography of China. In this study we collected records of monthly temperature at 1153 stations and precipitation at 1202 stations in China and neighboring countries to construct a monthly climate dataset in China with a 0.025° resolution (~2.5 km). The dataset, named LZU0025, was designed by Lanzhou University and used a partial thin plate smoothing method embedded in the ANUSPLIN software. The accuracy of LZU0025 was evaluated based on three aspects: (1) Diagnostic statistics from the surface fitting model during 1951–2011. The results indicate a low mean square root of generalized cross validation (RTGCV) for the monthly air temperature surface (1.06 °C) and monthly precipitation surface (1.97 mm1/2). (2) Error statistics of comparisons between interpolated monthly LZU0025 with the withholding of climatic data from 265 stations during 1951–2011. The results show that the predicted values closely tracked the real true values with values of mean absolute error (MAE) of 0.59 °C and 70.5 mm, and standard deviation of the mean error (STD) of 1.27 °C and 122.6 mm. In addition, the monthly STDs exhibited a consistent pattern of variation with RTGCV. (3) Comparison with other datasets. This was done in two ways. The first was via comparison of standard deviation, mean and time trend derived from all datasets to a reference dataset released by the China Meteorological Administration (CMA), using Taylor diagrams. The second was to compare LZU0025 with the station dataset in the Tibetan Plateau. Taylor diagrams show that the standard deviation, mean and time trend derived from LZU had a higher correlation with that produced by the CMA, and the centered normalized root-mean-square difference for this index derived from LZU and CMA was lower. LZU0025 had high correlation with the Coordinated Energy and Water Cycle Observation Project (CEOP) - Asian Monsoon Project, (CAMP) Tibet surface meteorology station dataset for air temperature, despite a non-significant correlation for precipitation at a few stations. Based on this comprehensive analysis, we conclude that LZU0025 is a reliable dataset. LZU0025, which has a fine resolution, can be used to identify a greater number of climate types, such as tundra and subpolar continental, along the Himalayan Mountain. We anticipate that LZU0025 can be used for the monitoring of regional climate change and precision agriculture modulation under global climate change.

0 2019-11-18

Precipitation observation data of the Qiang-Tang Plateau (2017)

This is the rain gauge precipitation observation data along Bange-Ali line in the Qiang-tang Plateau. It can be used to evaluate and improve the quality of satellite precipitation products, thereby improving the estimation accuracy of precipitation in the Qiangtang Plateau. The data is observed from June 19, 2016 to September 24, 2017. And a piece of data is recorded every 60 minutes. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.

0 2019-11-18

Precipitation observation data of the east bank of Selincuo Lake (2016-2017)

This is the precipitation observation data set of the east bank of Selincuo Lake. It can be used in Glaciology, Climatology, Environmental Change, Hydrologic Process in Cold Regions and other disciplinary areas. The data is observed from September 1, 2016 to August 17, 2017. It is measured by automatic rain gauge and a piece of data is recorded every 60 minutes. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.

0 2019-11-18

Precipitation observation data on Taerma Township (2016-2017)

This is the precipitation observation data of the observation point in Taerma Township. It can be used in Glaciology, Climatology, Environmental Change, Hydrologic Process in Cold Regions and other disciplinary areas. The data is observed from September 15, 2016 to August 17, 2017. It is measured by automatic rain gauge and a piece of data is recorded every 60 minutes. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.

0 2019-11-18

Meteorological observation data of Selincuo Lake camp (2017)

This is the meteorological observation data of Selincuo Lake Camp. It includes the radiosonde data, turbulent flux, radiation observation data, general meteorologrical elements near the surface layer and others. The radiosonde data is observed separately at 14:00 and 18:00 July 2, at 8:00, 12:00, 16:00 and 20:00 July 3, at 8:00, 12:00, 16:00, 20:00, and 23:00 July 4, at 6:00 July 5, 2017. The observation time of turbulent flux and radiation observation data is from 17:30 June 29 to 10:00 July 6, 2017. The observation time of general meteorologrical elements near the surface layer is from 18:30 June 29 to 10:10 July 6, 2017. The wind lidar observation time is from 2:24 June 30 to 3:49 July 6, 2017. The data is stored as an excel file.

0 2019-11-18

Slopes-Runoff observation dataset of Selincuo Basin (2017)

This is the slopes-runoff observation data set in typical underlying surface runoff fields of Selincuo Basin. It can be used in Hydrologic Process in Cold Regions, Geocryology and other disciplinary areas. The underlying surface of the observation point is the typical alpine steppe. The data is observed on July 2, August 10, August 17, August 26, August 30, September 1, September 2, September 3, and September 4, 2017. The observation includes the rainfall time, rainfall duration, rainfall, average rainfall, runoff, and the runoff coefficient. The precipitation duration is accurate to minute, the precipitation observation is accurate to 0.1mm, and the runoff observation is converted to mm, which is accurate to 0.01mm.The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The data is stored as an excel file.

0 2019-11-18