Meteorological observation data of the comprehensive observation and research station of the west wind belt environment in mostag (2017-2018)

The daily values of air temperature, air pressure, relative humidity, wind speed, wind direction, precipitation, radiation, water vapor pressure, etc. observed by the comprehensive observation and research station of the west wind belt of mostag.

0 2020-01-18

Long-term C- and L-band SAR backscatter data for monitoring post-fire vegetation recovery in the tundra environment of the Anaktuvuk River, Alaska (Version 1.0) (2002-2017)

Wildfires can strongly affect the frozen soil environment by burning surface vegetation and soil organic matter. Vegetation affected by fire can take many years to return to mature pre-fire levels. In this data set, the effects of fires on vegetation regrowth in a frozen-ground tundra environment in the Anaktuvuk River Basin on the North Slope of Alaska were studied by quantifying changes in C-band and L-band SAR backscatter data over 15 years (2002-2017). After the fire, the C- and L-band backscattering coefficients increased by 5.5 and 4.4 dB, respectively, in the severe fire area compared to the unburned area. Five years after the fire, the difference in C-band backscattering between the fire zone and the unburned zone decreased, indicating that the post-fire vegetation level had recovered to the level of the unburned zone. This long recovery time is longer than the 3-year recovery estimated from visible wavelength-based NDVI observations. In addition, after 10 years of vegetation recovery, the backscattering of the L-band in the severe fire zone remains approximately 2 dB higher than that of the unburned zone. This continued difference may be caused by an increase in surface roughness. Our analysis shows that long-term SAR backscattering data sets can quantify vegetation recovery after fire in an Arctic tundra environment and can also be used to supplement visible-wavelength observations. The temporal coverage of the backscattering data is from 2002 to 2017, with a time resolution of one month, and the data cover the Anaktuvuk River area on the North Slope of Alaska. The spatial resolution is 30~100 m, the C- and L-band data are separated, and a GeoTIFF file is stored every month. For details on the data, see SAR Backscattering Data of the Anaktuvuk River Basin on the North Slope of Alaska - Data Description.

0 2020-01-18

Dataset of thin cloud micro physical characteristics based on the infrared radiation spectrum of the ground in Arctic Alaska (2000-2014)

Thin cloud inversion data, a remote sensing inversion product, was collected for an Arctic site in Alaska based on observations of the infrared radiation spectrum of the ground in conjunction with an optimization method. The temporal coverage of the data is from 2000 to 2014, and the temporal resolution is one hour. The data represent the average characteristics of the different cloud layers. The spatial coverage is one site in Arctic Alaska, with latitude and longitude coordinates of 71°19′22.8′′N, 156°36′32.4′′ W. The characteristic variables include cloud water effective radius, cloud water content, cloud ice effective radius, cloud ice content, and cloud optical thickness; the corresponding observation inversion error ranges are approximately 10%, 20%, 10%, 20%, and 15%, respectively. The data files are in the .dat format.

0 2020-01-18

Data of aerosol types in the three polar region V1.0 (2006-2019)

The three pole aerosol type data product is an aerosol type result obtained by integrating the data assimilation of Meera 2 and the active satellite CALIPSO product through a series of data preprocessing, quality control, statistical analysis and comparative analysis. The key of this algorithm is to judge the type of CALIPSO aerosol. In the process of aerosol type data fusion, according to the type and quality control of CALIPSO aerosol, and referring to the type of merra 2 aerosol, the final aerosol type data (12 kinds in total) and quality control results in the three pole area are obtained. The data product fully considers the vertical distribution and spatial distribution of aerosols, with high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).

0 2020-01-18

Biomass burning emission inventory (2015)

It includes the emission of SO2, NOx, VOCs, NH3, OC, EC, CO2, CH4 and Hg from biomass burning source, which can provide data for understanding the emission situation of the third polar region and input data for model simulation. The basic data is based on data collection, satellite observation, literature and other methods. The emission inventory of 3km * 3km biomass burning sources is established. The data in the work comes from the FAO, MODIS satellite data and scientific literature, and its quality can be guaranteed. The data can be used for further study of climate change and air quality in the third polar region.

0 2020-01-17

Daily maximum temperature, daily average relative humidity dataset of Pan-Third Pole key points region (2000-2016)

The basic data source of this dataset is from the website of the National Oceanic and Atmospheric Administration (NOAA). NOAA satellites are meteorological observation satellites. Provide meteorological environment information including temperature, precipitation, dew point, wind speed, etc. This dataset mainly covers key nodes in the Southeast Asia and Middle East regions. The main steps of data processing are as follows: firstly, the daily maximum temperature data is obtained by screening from a large number of basic meteorological data; the daily maximum temperature relative humidity relationship is integrated, and the daily relative humidity calculation is completed based on the dew point temperature data of the weather station. This data set provides basic information and a strong reference for evaluating the high temperature weather process in key node areas.

0 2020-01-17

Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)

The near surface atmospheric forcing and surface state data set of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.

0 2020-01-16

Meteorological data of the integrated observation and research station of Ngari for desert environment (2009-2017)

The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.

0 2020-01-13

Aerosol optical thickness data of the Arctic Alaska station V1.0 (2016-2019)

The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2016 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format.

0 2020-01-12

Aerosol optical thickness in the three polar region V1.0 (2000-2019)

The "poles AOD Collection 1.0" aerosol optical thickness (AOD) data set adopts the self-developed visible band remote sensing inversion method, combined with the merra-2 model data and the official NASA product mod04. The data covers from 2000 to 2019, with the time resolution of day by day, covering the "three poles" (Antarctic, Arctic and Qinghai Tibet Plateau) area, and the spatial resolution of 0.1. Degree. The inversion method mainly uses the self-developed APRs algorithm to invert the aerosol optical thickness over ice and snow. The algorithm considers the BRDF characteristics of ice and snow surface, and is suitable for the inversion of aerosol optical thickness over ice and snow. The experimental results show that the relative deviation of the data is less than 35%, which can effectively improve the coverage and accuracy of the aerosol optical thickness in the polar region.

0 2020-01-12