Hydrogen and oxygen stable isotope data set of Kathmandu precipitation (2016-2018)

Precipitation stable isotopes (2H and 18O) are adequately understood on their climate controls in the Tibetan Plateau, especially the north of Himalayas via about 30 years’ studies. However, knowledge of controls on precipitation stable isotopes in Nepal (the south of Himalayas), is still far from sufficient. This study described the intra-seasonal and annual variations of precipitation stable isotopes at Kathmandu, Nepal from 10 May 2016 to 21 September 2018 and analysed the possible controls on precipitation stable isotopes. All samples are located in Kathmandu, the capital of Nepal (27 degrees north latitude, 85 degrees east longitude), with an average altitude of about 1400 m. Combined with the meteorological data from January 1, 2001 to September 21, 2018, the values of precipitation (P), temperature (T) and relative humidity (RH) are given.

0 2020-09-22

NCEP reanalysis datasets (1948-2018)

1) The data set is composed of global atmospheric reanalysis data jointly produced by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). These grid data are generated by reanalysing the global meteorological data from 1948 to present by applying observation data, forecasting models and assimilation systems. The data variables include surface, near-surface (.995 sigma layer) and multiple meteorological variables in different barospheres, such as precipitation, temperature, relative humidity, sea level pressure, geopotential height, wind field, heat flux, etc. 2) The coverage time is from 1948 to 2018, and the data from 1948 to 1957 are non-Gaussian grid data. The data cover the whole world. The spatial resolution is a 2.5° latitude by 2.5° longitude grid. The vertical resolution is a 17-layer standard pressure barosphere, with layer boundaries at 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa, and 28 sigma levels. Some variables are calculated for 8 layers (omega) or 12 layers (humidity), with temporal resolutions of 6 hours, daily, monthly or a long-term monthly average (from 1981 to 2010). The daily data are obtained by averaging the daily values of 0Z, 6Z, 12Z and 18Z. 3) Missing values are assigned a value of -9.99691e+36f. The data are stored in the .nc format with the file name var.time.stat.nc, and each file includes data on latitude, longitude, time, and atmospheric variables. For detailed data specifications, please visit http://www.esrl.noaa.gov/pad/data.

0 2020-09-14

China meteorological forcing dataset (1979-2018)

The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.

0 2020-09-03

Data set of spatial and temporal distribution of water resources in Yarlung Zangbo River from 1998 to 2016

This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).

0 2020-08-27

Daily meteorological dataset of basic meteorological elements of China National Surface Weather Station (V3.0)(1951-2010)

"China's surface climate data daily value data set (V3.0)" contains 699 benchmarks and basic weather stations in China. Since January 1951, the station's air pressure, temperature, precipitation, evaporation, relative humidity, wind direction and wind speed, and sunshine hours. The number and the daily value data of the 0cm geothermal element. After the quality control of the data, the quality and integrity of each factor data from 1951 to 2010 is significantly improved compared with the similar data products released in the past. The actual rate of each factor data is generally above 99%, and the accuracy of the data is close. 100%. China Earth International Exchange Station Climate Data Daily Value Dataset (V3.0), mainly based on the ground-based meteorological data construction project archived "1951-2010 China National Ground Station data corrected monthly report data file (A0/A1/ A) The basic data set was developed. This data can provide a variety of basic drive data for other scientific research.

0 2020-08-25

Meteorological observation dataset of the standard meteorological station in the Irtysh River basin(1961-2015)

The "Meteorological observation dataset of the standard meteorological station in the Irtysh River basin" contains the temperature and precipitation observation data at the monthly scale of the Habahe meteorological station, Jimunai meteorological station, Buerjin meteorological station, Fuhai meteorological station, Altay meteorological station and Fuyun meteorological station of the Irtysh river basin. The time scale of the data is month. The data set started in January 1961 (data of Fuyun station was missing from January to May 1961) and ended in December 2015. The special work of ground basic data re-examined the quality of historical informatization documents and revised the site documents with problems and differences. The data set does not revise the homogeneity of data, but segments the stations with obvious heterogeneity.

0 2020-08-24

Monthly Temperature and radiation data in Central Asia (2000-2015)

The temporal resolution of temperature and radiation data in Central Asia is monthly scale, and the spatial resolution is 0.5 degree and 0.05 degree, respectively. The GCS_WGS_1984 projection coordinate system was used. Among them, the downward short wave radiation, air temperature and vapor pressure data of GLDAS, surface temperature / emissivity data of MOD11C3, surface albedo data of MCD43C3 and ASTER_GEDv4.1 are used for radiation data calculation; the temperature data was calculated by MOD06_ L2 cloud products and MOD07_ L2 atmospheric profile data was calculated. This data is based on the advanced remote sensing algorithm and makes full use of the current high-precision remote sensing data and products, which is different from the traditional climate model for the estimation of climate elements. The data can be used to analyze the spatial and temporal variation characteristics of water resources in Central Asia, analyze the supply-demand relationship of agricultural water resources and evaluate the development potential of water resources.

0 2020-08-18

Temperature and precipitation grid data of the Qinghai Tibet Plateau and its surrounding areas in 1998-2017Grid data of annual temperature and annual precipitation on the Tibetan Plateau and its surrounding areas during 1998-2017

Data description: This dataset includes the grid data of annual temperature and annual precipitation on the Tibetan Plateau from 1998 to 2017. It is the basic data for study of climate change and its impact on the ecological environment. Data source and processing: The meta data was aquired from the temperature and precipitation daily data of China's ground high-density stations (above 2,400 national meteorological stations) based on the latest compilation of the National Meteorological Information Center's basic data. After removing the missing stations, the software's thin plate spline method in ANUSPLIN was used to perform spatial interpolation, in order to generate grid data with spactial resolution of 1 km on the Tibetan Plateau . Data application: This data can be used to indentify the impact of climate change on the ecological environment.

0 2020-08-15

Meteorological, albedo and evapotranspiration data set of hulugou shrub experimental area in the upper reaches of Heihe River (2012-2014)

The data set is the meteorological and observational data of hulugou shrub experimental area in the upper reaches of Heihe River, including meteorological data, albedo data and evapotranspiration data under shrubs. 1. Meteorological data: Qilian station longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m, scale meteorological data from January 1, 2012 to December 31, 2013. Observation items include: temperature, humidity, vapor pressure, net radiation, four component radiation, etc. The data are daily scale data, and the calculation period is 0:00-24:00 2. Albedo: daily surface albedo data from January 1, 2012 to July 3, 2014, including snow and non snow periods. The measuring instrument is the radiation instrument on the 10m gradient tower in hulugou watershed. Among them, the data from August 4 to October 2, 2012 was missing due to instrument circuit problems, and the rest data quality was good 3. Evapotranspiration: surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 18 to August 5, 2014, which is the daily scale data. The data include precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrubs and forests. The evapotranspiration of grassland under canopy was measured by a small lysimeter with a diameter of 25 cm and a depth of 30 cm. Two lysimeters were set up in each shrub plot, and one lysimeter was set for each shrub in transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel is placed in the inner bucket, and the outer bucket is buried in the soil. During the embedding, the outer bucket shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a rainproof board about 2.0 cm wide to prevent surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological stations to measure grassland evapotranspiration, and a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was also set up in the sample plot of Picea crassifolia forest to measure the evaporation under the forest. All lysimeters are weighed at 20:00 every day (the electronic balance has a sensing capacity of 1.0 g, which is equivalent to 0.013 mm evaporation). Wind proof treatment should be taken to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to the design principle of lysimeter lysimeter, evapotranspiration is mainly determined by the quality difference in two consecutive days. Since it is weighed every day, it is calculated by water balance.

0 2020-07-31

Monthly mean temperature for the period (1961-2010)

Based on the data information of 21 regular meteorological observation stations in Heihe River Basin and its surrounding areas and 13 national benchmark stations around Heihe River provided by the data management center of Heihe plan, the daily air temperature is statistically sorted out, and the monthly air temperature data of 1961-2010 for many years is calculated, and the spatial stability analysis is carried out to calculate the coefficient of variation. If the coefficient of variation is greater than 100%, then Calculate the relationship between the station and geographical terrain factors by geographical weighted regression, and get the monthly temperature distribution trend; if the coefficient of variation is less than or equal to 100%, calculate the relationship between the station temperature value and geographical terrain factors (longitude, latitude, elevation) by ordinary least square regression, and get the monthly temperature distribution trend; use HASM (high accuracy surface modeling) for the residual after removing the trend Method). Finally, the monthly average temperature distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: average monthly temperature for many years from 1961 to 2010. Spatial resolution: 500M.

0 2020-07-30