Monthly standard weather station dataset in Sanjiangyuan (1957-2015)

Monthly meteorological data of Sanjiangyuan includes 32 national standard meteorological stations. There are 26 variables: average local pressure, extreme maximum local pressure, date of extreme maximum local pressure, extreme minimum local pressure, date of extreme minimum local pressure, average temperature, extreme maximum temperature, date of extreme maximum temperature, extreme minimum temperature and date of extreme minimum temperature, average temperature anomaly, average maximum temperature, average minimum temperature, sunshine hours, percentage of sunshine, average relative humidity, minimum relative humidity, date of occurrence of minimum relative humidity, precipitation, days of daily precipitation >=0.1mm, maximum daily precipitation, date of maximum daily precipitation, percentage of precipitation anomaly, average wind speed, maximum wind speed, date of maximum wind speed, maximum wind speed, wind direction of maximum wind speed, wind direction of maximum wind speed and occurrence date of maximum wind speed. The data format is txt, named by the site ID, and each file has 26 columns. The names and units of each column are explained in the SURF_CLI_CHN_MUL_MON_readme.txt file. site_id lat lon elv name_cn 52754 37.33 100.13 8301.50 Gangcha 52833 36.92 98.48 7950.00 Wulan 52836 36.30 98.10 3191.10 Dulan 52856 36.27 100.62 2835.00 Qiapuqia 52866 36.72 101.75 2295.20 Xining 52868 36.03 101.43 2237.10 Guizhou 52908 35.22 93.08 4612.20 Wudaoliang 52943 35.58 99.98 3323.20 Xinghai 52955 35.58 100.75 8120.00 Guinan 52974 35.52 102.02 2491.40 Tongren 56004 34.22 92.43 4533.10 Togton He 56018 32.90 95.30 4066.40 Zaduo 56021 34.13 95.78 4175.00 Qumalai 56029 33.02 97.02 3681.20 Yushu 56033 34.92 98.22 4272.30 Maduo 56034 33.80 97.13 4415.40 Qingshui River 56038 32.98 98.10 9200.00 Shiqu 56043 34.47 100.25 3719.00 Guoluo 56046 33.75 99.65 3967.50 Dari 56065 34.73 101.60 8500.00 Henan 56067 33.43 101.48 3628.50 Jiuzhi 56074 34.00 102.08 3471.40 Maqu 56080 35.00 102.90 2910.00 Hezuo 56106 31.88 93.78 4022.80 Suo County 56116 31.42 95.60 3873.10 Dingqing 56125 32.20 96.48 3643.70 Nangqian 56128 31.22 96.60 3810.00 Leiwuqi 56137 31.15 97.17 3306.00 Changdu 56151 32.93 100.75 8530.00 Banma 56152 32.28 100.33 8893.90 Seda

0 2021-04-18

Data set of climatic elements in Hoh Xil area, Qinghai Province (1990)

This data set is the data set of climate elements in Hoh Xil area of Qinghai Province, covering the data of 14 observation stations, recording the climate observation data in 1990 in detail. Hoh Xil area in Qinghai Province has a high terrain with an average altitude of over 5000m. The climate is cold, the air is thin and the natural environment is bad. The vast area is still no man's land, known as "forbidden zone for human beings". Due to less interference from human activities, most of the area still maintains its original natural state. Its special geographical location, crustal structure and natural environment, as well as the unique composition of the biological flora, have been the focus of domestic surgical circles. The original data of the data set is digitized from the book "natural environment of Hoh Xil, Qinghai Province". The climate observation data include solar radiation, temperature, precipitation, air pressure, wind speed, etc. This data set provides basic data for the study of Hoh Xil area in Qinghai Province, and has reference value for the research in related fields.

0 2021-04-09

Dataset of 0.01° Surface Air Temperature over Tibetan Plateau (1979-2018)

The surface air temperature dataset of the Tibetan Plateau is obtained by downscaling the China regional surface meteorological feature dataset (CRSMFD). It contains the daily mean surface air temperature and 3-hourly instantaneous surface air temperature. This dataset has a spatial resolution of 0.01°. Its time range for surface air temperature dataset is from 1979 to 2018. Spatial dimension of data: 73°E-106°E, 23°N-40°N. The surface air temperature with a 0.01° can serve as an important input for the modeling of land surface processes, such as surface evapotranspiration estimation, agricultural monitoring, and climate change analysis.

0 2021-04-09

The spatial dataset of climate on the Tibetan Plateau (1961-2020)

The meteorological elements distribution map of the plateau, which is based on the data from the Tibetan Plateau National Weather Station, was generated by PRISM model interpolation. It includes temperature and precipitation. Monthly average temperature distribution map of the Tibetan Plateau from 1961 to 1990 (30-year average values): t1960-90_1.e00,t1960-90_2.e00,t1960-90_3.e00,t1960-90_4.e00,t1960-90_5.e00, t1960-90_6.e00,t1960-90_7.e00,t1960-90_8.e00,t1960-90_9.e00,t1960-90_10.e00, t1960-90_11.e00,t1960-90_12.e00 Monthly average temperature distribution map of the Tibetan Plateau from 1991 to 2020 (30-year average values): t1991-20_1.e00,t1991-20_2.e00,t1991-20_3.e00,t1991-20_4.e00,t1991-20_5.e00, t1991-20_6.e00,t1991-20_7.e00,t1991-20_8.e00,t1991-20_9.e00,t1991-20_10.e00, t1991-20_11.e00,t1991-20_12.e00, Precipitation distribution map of the Tibetan Plateau from 1961 to 1990 (30-year average values): p1960-90_1.e00,p1960-90_2.e00,p1960-90_3.e00,p1960-90_4.e00,p1960-90_5.e00, p1960-90_6.e00,p1960-90_7.e00,p1960-90_8.e00,p1960-90_9.e00,p1960-90_10.e00, p1960-90_11.e00,p1960-90_12.e00 Precipitation distribution map of the Tibetan Plateau from 1991 to 2020 (30-year average values): p1991-20_1.e00,p1991-20_2.e00,p1991-20_3.e00,p1991-20_4.e00,p1991-20_5.e00, p1991-20_6.e00,p1991-20_7.e00,p1991-20_8.e00,p1991-20_9.e00,p1991-20_10.e00, p1991-20_11.e00,p1991-20_12.e00, The temporal coverage of the data is from 1961 to 1990 and from 1991 to 2020. The spatial coverage of the data is 73°~104.95° east longitude, 26.5°~44.95° north latitude, and the spatial resolution is 0.05 degrees×0.05 degrees (longitude×latitude), and it uses the geodetic coordinate projection. Name interpretation: Monthly average temperature: The average value of daily average temperature in a month. Monthly precipitation: The total precipitation in a month. Dimensions: The file format of the data is E00, and the DN value is the average value of monthly average temperature (×0.01°C) and the average monthly precipitation (×0.01 mm) from January to December. Data type: integer Data accuracy: 0.05 degrees × 0.05 degrees (longitude × latitude). The original sources of these data are two data sets of 1) monthly mean temperature and monthly precipitation observation data from 128 stations on the Tibetan Plateau and the surrounding areas from the establishing times of the stations to 2000 and 2) HadRM3 regional climate scenario simulation data of 50×50 km grids on the Tibetan Plateau, that is, the monthly average temperature and monthly precipitation simulation values from 1991 to 2020. From 1961 to 1990, the PRISM (Parameter elevation Regressions on Independent Slopes Model) interpolation method was used to generate grid data, and the interpolation model was adjusted and verified based on the site data. From 1991 to 2020, the regional climate scenario simulation data were downscaled to generate grid data by the terrain trend surface interpolation method. Part of the source data came from the results of the GCM model simulation; the GCM model used the Hadley Centre climate model HadCM2-SUL. a) Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504. b) Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynamics, 13, 103-134. The spatial interpolation of meteorological data adopted the PRISM (Parameter-elevation Regressions on Independent Slopes Model) method: Daly, C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140~158. Due to the difficult observational conditions in the plateau area and the lack of basic research data, there were deletions of meteorological data in some areas. After adjustment and verification, the accuracy of the data was only good enough to be used as a reference for macroscale climate research. The average relative error rate of the monthly average temperature distribution of the Tibetan Plateau from 1961 to 1990 was 8.9%, and that from 1991 to 2020 was 9.7%. The average relative error rate of precipitation data on the Tibetan Plateau from 1961 to 1990 was 20.9%, and that from 1991 to 2020 was 22.7%. The area of missing data was interpolated, and the values of obvious errors were corrected.

0 2021-04-09

The atmospheric forcing data in the Heihe River Basin (2000-2018)

Near surface atmospheric forcing data were produced by using Wether Research and Forecasting (WRF) model over the Heihe River Basin at hourly 0.05 * 0.05 DEG resolution, including the following variables: 2m temperature, surface pressure, water vapor mixing ratio, downward shortwave & upward longwave radiation, 10m wind field and the accumulated precipitation. The forcing data were validated by observational data collected by 15 daily Chinese Meteorological Bureau conventional automatic weather station (CMA), a few of Heihe River eco-hydrological process comprehensive remote sensing observation (WATER and HiWATER) site hourly observations were verified in different time scales, draws the following conclusion: 2m surface temperature, surface pressure and 2m relative humidity are more reliable, especially 2m surface temperature and surface pressure, the average errors are very small and the correlation coefficients are above 0.96; correlation between downward shortwave radiation and WATER site observation data is more than 0.9; The precipitation agreed well with observational data by being verified based on rain and snow precipitation two phases at yearly, monthly, daily time scales . the correlation coefficient between rainfall and the observation data at monthly and yearly time scales were up to 0.94 and 0.84; the correlation between snowfall and observation data at monthly scale reached 0.78, the spatial distribution of snowfall agreed well with the snow fractional coverage rate of MODIS remote sensing product. Verification of liquid and solid precipitation shows that WRF model can be used for downscaling analysis in complex and arid terrain of Heihe River Basin, and the simulated data can meet the requirements of watershed scale hydrological modeling and water resources balance. The data for 2000-2012 was provided in 2013. The data for 2013-2015 was updated in 2016. The data for 2016-2018 was updated in 2019.

0 2021-04-08

Future climate projection of China based on regcm4.6 (2007-2099)

Effective evaluation of future climate change, especially prediction of future precipitation, is an important basis for formulating adaptation strategies. This data is based on the RegCM4.6 model, which is compatible with multi-model and different carbon emission scenarios: CanEMS2 (RCP 45 and RCP85), GFDL-ESM3M (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), HadGEM2-ES (RCP2.6, RCP4.5 And RCP8.5), IPSL-CM5A-LR (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), MIROC5 (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). The future climate data (2007-2099) has 21 sets, with a spatial resolution at 0.25 degrees and the temporal resolution at 3 hours, daily and yearly scales.

0 2021-03-23

Radiosonde observation in 2008

This data is based on the modified radiosonde observation data of 2008 used by Chen et al. 2016, Chen et al. 2011 and Chen et al. 2013. The vertical resolution of the processed atmospheric wind speed, wind direction, temperature, relative humidity and pressure is 20m. The data of three observation stages in 2008 are processed, namely iop1, IOP2 and iop3. Iop1 started from February 25, 2008 to March 19, 2008, IOP2 from May 13, 2008 to June 12, 2008, and iop3 from July 7, 2008 to July 16, 2008.

0 2021-02-02

Basic meteorological data of glacier moraine area at 24K in Galongla, Southeast Tibet station, Chinese Academy of Sciences (2018-2019)

The data are collected from the automatic weather station (AWS, Campbell company) in the moraine area of the 24K glacier in the Southeast Tibet Plateau, Chinese Academy of Sciences. The geographic coordinates are 29.765 ° n, 95.712 ° E and 3950 m above sea level. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), net radiation (w / m2), water vapor pressure (kPa) and air pressure (mbar). In the original data, an average value was recorded every 30 minutes before October 2018, and then an average value was recorded every 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The net radiation probe is nr01, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the data has undergone strict quality control. The original abnormal data of 10 minutes and 30 minutes are removed first, and then the arithmetic mean of each hour is calculated. Finally, the daily value is calculated. If the number of hourly data is less than 24, the data is removed, and the corresponding date data in the data table is empty. In addition to the lack of some parameter data due to the thick snow and low temperature in winter and spring, the data can be used by scientific researchers who study climate, glacier and hydrology through strict quality control.

0 2021-01-27

Basic meteorological data of Yigong (2018-2019)

This data is the data of the automatic weather station (AWS, Campbell company) set up in Yigong Zangbu basin by the Southeast Tibet alpine environment comprehensive observation and research station of Chinese Academy of Sciences in 2018. The geographic coordinates are 30.1741 n, 94.9334 e, and the altitude is 2282m. The underlying surface is grassland. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), water vapor pressure (kPa) and air pressure (MB) and daily accumulated value of precipitation. The original data is an average value recorded in 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The rainfall instrument is tb4, the atmospheric pressure sensor is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the quality of the original data is better, less missing. The data station is a meteorological station in the lower altitude of the Qinghai Tibet Plateau, which will be updated from time to time in the future. It can be used by researchers studying climate, hydrology, glaciers, etc.

0 2021-01-27

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix(Zhangye gobi desert station)

This dataset contains the automatic weather station (AWS) measurements from Bajitan Gobi station in the flux observation matrix from 13 May to 21 September, 2012. The site (100.30420° E, 38.91496° N) was located in a Gobi surface, which is near Zhangye city, Gansu Province. The elevation is 1562 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m and 10 m, towards north), air pressure (PTB110; 2 m), rain gauge (TE525M; 10 m), wind speed (03001; 5 m and 10 m, towards north), wind direction (03001; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (IRTC3; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

0 2021-01-26