China meteorological assimilation driving datasets for the SWAT model Version 1.1 (2008-2016)

The China Meteorological Assimilation Driving Datasets (CMADS) incorporates technologies of the China Land Data Assimilation System (CLDAS) developed by the China Meteorological Administration. It was constructed using multiple technologies and scientific methods, including loop nesting of data, projection of resampling models, and bilinear interpolation. The CMADS series of datasets can be used to drive various hydrological models, such as SWAT, the Variable Infiltration Capacity (VIC) model, and the Storm Water Management model (SWMM). It also allows users to conveniently extract a wide range of meteorological elements for detailed climatic analyses. Data sources for the CMADS series include nearly 40,000 regional automatic stations under China’s 2,421 national automatic and business assessment centres. This ensures that the CMADS datasets have wide applicability within the country, and that data accuracy was vastly improved. The CMADS series of datasets has undergone finishing and correction to match the specific format of input and driving data of SWAT models. This reduces the volume of complex work that model builders have to deal with. An index table of the various elements encompassing all of East Asia was also established for SWAT models. This allows the models to utilize the datasets directly, thus eliminating the need for any format conversion or calculations using weather generators. Consequently, significant improvements to the modelling speed and output accuracy of SWAT models were achieved. Most of the source data in the CMADS datasets are derived from CLDAS in China and other reanalysis data in the world. The integration of air temperature (2m), air pressure, humidity, and wind speed data (10m) was mainly achieved through the LAPS/STMAS system. Precipitation data were stitched using CMORPH’s global precipitation products and the National Meteorological Information Center’s data of China (which is based on CMORPH’s integrated precipitation products). The latter contains daily precipitation records observed at 2,400 national meteorological stations and the CMORPH satellite’s inversion precipitation products.The inversion algorithm for incoming solar radiation at the ground surface makes use of the discrete longitudinal method by Stamnes et al.(1988)to calculate radiation transmission. The resolutions for CMADS V1.0, V1.1, V1.2, and V1.3 were 1/3°, 1/4°, 1/8°, and 1/16°, respectively. In CMADS V1.0 (at a spatial resolution of 1/3°), East Asia was spatially divided into 195 × 300 grid points containing 58,500 stations. Despite being at the same spatial resolution as CMADS V1.0, CMADS V1.1 contains more data, with 260 × 400 grid points containing 104,000 stations. For both versions, the stations’ daily data include average solar radiation, average temperature (2m), average pressure, maximum and minimum temperature (2m), specific humidity, cumulative precipitation, and average wind speed (10m). The CMADS comprises other variables for any hydrological model(under 'For-other-model' folder): Daily Average Temperature (2m), Daily Maximum Temperature (2m), Daily Minimum Temperature (2m), Daily cumulative precipitation (20-20h), Daily average Relative Humidity, Daily average Specific Humidity, Daily average Solar Radiation, Daily average Wind (10m), and Daily average Atmospheric Pressure. Introduction to metadata of CMADS CMADS storage path description:(CMADS was divided into two datesets) 1.CMADS-V1.0\For-swat\ --specifically driving the SWAT model 2.CMADS-V1.0\For-other-model\ --specifically driving the other hydrological model(VIC,SWMM,etc.) CMADS--\For-swat-2009\ folder contain:(Station\ and Fork\) 1).Station\ Relative-Humidity-58500\ Daily average relative humidity(fraction) Precipitation-58500\ Daily accumulated 24-hour precipitation(mm) Solar radiation-58500\ Daily average solar radiation(MJ/m2) Tmperature-58500\ Daily maximum and minimum 2m temperature(℃) Wind-58500\ Daily average 10m wind speed(m/s) Where R, P, S, T, W+ dimensional grid number - the number of longitude grid is the station in the above five folders respectively.(Where R,P,S,T,W respective Daily average relative humidity,Daily cumulative precipitation(24h),Daily mean solar radiation(MJ/m2),Daily maximum and minimum temperature(℃) and Daily mean wind speed (m/s)) respectively.Data format is (.dbf) 2).Fork\ (Station index table over East Asia) PCPFORK.txt (Precipitation index table) RHFORK.txt (Relative humidity index table) SORFORK.txt (Solar radiation index table) TMPFORK.txt (Temperature index table) WINDFORK.txt (Wind speed index) CMADS--\For-swat-2012\ folder contain:(Station\ and Fork\) Storage structure is consistency with \For-swat- 2009\.However, all the data in this directory are only available in TXT format and can be readed by SWAT2012. 3)\For-other-model\ (Includes all weather input data required by the any hydrologic model (daily).) Atmospheric-Pressure-txt\ Daily average atmospheric pressure(hPa) Average-Temperature-txt\ Daily average 2m temperature(℃) Maximum-Temperature-txt\ Daily maximum 2m temperature(℃) Minimum-Temperature-txt\ Daily minimum 2m temperature(℃) Precipitation-txt\ Daily accumulated 24-hour precipitation (mm) Relative-Humidity-txt\ Daily average relative humidity(fraction) Solar-Radiation-txt\ Daily average solar radiation(MJ/m2) Specific-Humidity-txt\ Daily average Specific Humidity(g/kg) Wind-txt\ Daily average 10m wind speed(m/s) Data storage information: data set storage format is .dbf and .txt Other data information: Total data:45GB Occupied space: 50GB Time: From year 2008 to year 2014 Time resolution: Daily Geographical scope description: East Asia Longitude: 60° E The most east longitude: 160°E North latitude: 65°N Most southern latitude: 0°N Number of stations: 58500 stations Spatial resolution: 1/3 * 1/3 * grid points Vertical range: None

0 2020-04-02

China meteorological forcing dataset (1979-2018)

The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.

0 2020-04-01

China regional atmospheric driving dataset based on geostationary satellites and reanalysis data (2005-2010)

Based on the geostationary satellites and reanalysis data, the China Regional Atmospheric Driving Dataset is a set of atmospheric driving data sets with high spatiotemporal resolution prepared by the China Meteorological Administration, with a spatial resolution of 0.1 ° × 0.1 ° and a temporal resolution of 1 Hours, covering a range of 75 ° -135 ° east longitude and 15 ° -55 ° north latitude, include 6 elements of near-surface temperature, relative humidity, ground pressure, near-surface wind speed, incident solar radiation on the ground, and ground precipitation rate. The preparation process of precipitation products is as follows: The 6-hour cumulative precipitation estimated from the multi-channel data of the China Fengyun-2 geostationary satellite is integrated with the 6-hour cumulative precipitation from conventional ground observations to obtain 6-hour cumulative precipitation spatial distribution data, and then use the high-resolution cloud classification information retrieved from the multi-channel inversion of the geostationary satellites determines the interpolation time weight of the cumulative precipitation and obtains an estimated one-hour cumulative precipitation. The preparation process of the radiation data is as follows: The surface incident solar radiation based on FY-2C, uses the radiation transmission model DISORT (Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-parallel Medium) to calculate the radiation transmission and obtains the data of surface incident solar radiation in China. Preparation process of other elements: The space and time interpolation method is used for the NCEP reanalysis data of 1.0 ° × 1.0 ° to obtain driving factors such as near-surface air temperature, relative humidity, ground pressure, and near-surface wind speed of 0.1 ° × 0.1 ° per hour. Physical meaning of each variable: Meteorological Elements || Variable Name || Unit || Physical Meaning | Surface temperature || TBOT || K || Surface temperature (2m) | Surface pressure || PSRF || Pa || Surface pressure | Relative humidity on the ground || RH || kg / kg || Relative humidity near the ground (2m) | Wind speed on the ground || WIND || m / s || Wind speed near the ground (anemometer height) | Surface incident solar radiation || FSDS || W / m2 || Surface incident solar radiation | Precipitation Rate || PRECTmms || mm / hr || Precipitation Rate For more information, see the data documentation published with the data.

0 2020-03-31

Reanalysis data for surface meteorological elements for western China (2002)

The research project on land surface data assimilation system in western China belongs to the major research plan of "environment and ecological science in western China" of the national natural science foundation. the person in charge is Li Xin, researcher of the institute of environment and engineering in cold and arid regions of the Chinese academy of sciences. the project runs from January 2003 to December 2005. One of the data collected in this project is the reanalysis data of surface climate factors in western China in 2002. This data set is generated based on the daily 1 × 1 provided by the National Environmental Prediction Center (NCEP). However, the re-analysis of the data has the following problems: (1) the temporal and spatial resolution is not high enough (the horizontal resolution is 1 degree and the time is 6 hours); (2) The low-level errors in plateau areas are large; (3) The data are standard isosurface data and need interpolation. The 2002 reanalysis data set of surface climate elements in western China was generated by combining NCEP reanalysis data and MM5 model by Dr. Longxiao and Professor Qiu Chongjian of Lanzhou University using Newton relaxation data assimilation method (Nudging), including 10m horizontal and vertical wind speed (m/s), 2m air temperature (k), 2m mixing ratio, surface pressure (Pa), upstream and downstream short wave and long wave radiation (w/m2), convective precipitation and large scale precipitation (mm/s) at 0.25 degree per hour throughout 2002. I. preparation background The quality of the driving data seriously affects the ability of the land surface model to simulate the land surface state, so a very important component of the land surface modeling research is the driving data used to drive the land surface model. No matter how realistic these models are in describing the surface process, no matter how accurate the boundary and initial conditions they input, if the driving data are not accurate, they cannot get the results close to reality. Land surface models are so dependent on the quality of externally provided data that any error in these externally provided data will seriously affect the ability of land surface models to simulate soil moisture, runoff, snow cover and latent heat flux. These externally provided data include: precipitation, radiation, temperature, wind field, humidity and pressure. The 2002 reanalysis data set of surface climate elements in western China uses Newton relaxation data assimilation method (Nudging) to combine NCEP reanalysis data and MM5 model to generate driving data with higher spatial and temporal resolution suitable for complex terrain in western China. Second, the basic parameters of the operation mode 1. Using the US PSU/NCAR mesoscale model MM5 as a simulation model; The selection of simulation grid domain: center (32°N, 90°E), grid distance of 36km, number of horizontal grid points of 131*151, vertical resolution of 25 layers, and mode top of 100hPa;; 2. The data used for initialization are 1 * 1 GRIB grid data of NCEP in the United States. 3. The time step is 120s. Third, the physical process 1. physical process treatment of cloud and precipitation: Grell cumulus cloud parameterization scheme is adopted for sub-grid scale precipitation, and Reisner mixed phase microphysical explicit scheme is adopted for distinguishable scale precipitation; 2. MRF parameterization scheme is adopted for planetary boundary layer process. 3. the radiation process adopts CCM2 radiation scheme. IV. File Format and Naming It is stored in a monthly folder and contains 24 hours of data every day. The naming rules are as follows: 2002***&.forc, where * * * is Julian day and 2002***& is time (in hours), where. forc is the file extension. V. data format Stored in binary floating point type, each data takes up 4 bytes.

0 2020-03-29

China meteorological forcing dataset (1979-2015)

The Chinese regional surface meteorological element data set is a set of near-surface meteorological and environmental element reanalysis data set developed by the Qinghai-Tibet Plateau Research Institute of the Chinese Academy of Sciences. The data set is based on the existing Princeton reanalysis data, GLDAS data, GEWEX-SRB radiation data and TRMM precipitation data in the world, and is made by combining the conventional meteorological observation data of China Meteorological Administration. The temporal resolution is 3 hours and the horizontal spatial resolution is 0.1, including 7 factors (variables) including near-surface air temperature, near-surface air pressure, near-surface air specific humidity, near-surface full wind speed, ground downward short wave radiation, ground downward long wave radiation and ground precipitation rate. The physical meaning of each variable: | Meteorological Element || Variable Name || Unit || Physical Meaning | near-surface temperature ||temp|| K || instantaneous near-surface (2m) temperature | surface pressure || pres|| Pa || instantaneous surface pressure | specific humidity of near-surface air || shum || kg/ kg || instantaneous specific humidity of near-surface air | near ground full wind speed || wind || m /s || instantaneous near ground (anemometer height) full wind speed | downward short wave radiation || srad || W/m2 || 3-hour average (-1.5 HR ~+1.5 HR) downward short wave radiation | Downward Long Wave Radiation ||lrad ||W/m2 ||3-hour Average (-1.5 hr ~+1.5 hr) Downward Long Wave Radiation | precipitation rate ||prec||mm/hr ||3-hour average (-3.0 HR ~ 0.0 HR) precipitation rate For more information, please refer to the "User's Guide for China Meteorological Al Forcing Dataset" published with the data. The main changes in the latest version (01.06.0014) are: 1. Extend the data to December 2015 (except for short-wave and long-wave data, only until October 2015; the data from November to December 2015 are interpolated based on GLDAS data, and the error may be too large); 2. Set the minimum wind speed at 0.05 m/s; 3. Fixed a bug in the previous radiation algorithm to make our short wave and long wave data more reasonable in the morning and evening periods. 4. bug of precipitation data has been corrected, and the period involved in the change is 2011-2015.

0 2020-03-28

Meteorological data of surface environment and observation network in China's cold region (2018)

1) Data content (including elements and significance): 21 stations (Southeast Tibet station, Namucuo station, Zhufeng station, mustag station, Ali station, Naqu station, Shuanghu station, Geermu station, Tianshan station, Qilianshan station, Ruoergai station (northwest courtyard), Yulong Xueshan station, Naqu station (hanhansuo), Haibei Station, Sanjiangyuan station, Shenzha station, gonggashan station, Ruoergai station( Chengdu Institute of biology, Naqu station (Institute of Geography), Lhasa station, Qinghai Lake Station) 2018 Qinghai Tibet Plateau meteorological observation data set (temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and evaporation) 2) Data source and processing method: field observation at Excel stations in 21 formats 3) Data quality description: daily resolution of the site 4) Data application results and prospects: Based on long-term observation data of various cold stations in the Alpine Network and overseas stations in the pan-third pole region, a series of datasets of meteorological, hydrological and ecological elements in the pan-third pole region were established; Strengthen observation and sample site and sample point verification, complete the inversion of meteorological elements, lake water quantity and quality, above-ground vegetation biomass, glacial frozen soil change and other data products; based on the Internet of Things technology, develop and establish multi-station networked meteorological, hydrological, Ecological data management platform, real-time acquisition and remote control and sharing of networked data.

0 2020-03-25

Surface PAR, SSR and NR products over the Heihe River basin (2012)

We produced surface photosynthetic effective radiation (PAR), solar radiation (SSR) and net radiation (NR) products with 1KM resolution in the heihe basin in 2012.The temporal resolution ranges from instantaneous to hourly and daily.Day-by-day ancillary data were also produced, including aerosol optical thickness, moisture content, NDVI, snow cover, and surface albedo.Among them, PAR and SSR use the method of lookup table to directly invert by combining the stationary weather satellite and polar orbit satellite MODIS product.NR was calculated by analyzing the relationship between net short-wave and net surface radiation.Hourly instantaneous products are weighted by average and integral to obtain hourly and daily cumulative products.

0 2020-03-15

HiWATER: Dataset of emissivity of typical terrain over Heihe River Basin (2014.03.25-2015.06.30)

This data set is typical specific emissivity data set of Heihe River Basin. Data observation is from March 25, 2014 to June 30, 2015. Instrument: Portable Fourier transform infrared spectrometer (102f), hand-held infrared thermometer Measurement method: 102f was used to measure the radiation values of cold blackbody, warm blackbody, observation target and gold plate. Using the radiation value of the cold and warm blackbody, the 102f is calibrated to eliminate the influence of the instrument's own emission. By using the iterative inversion algorithm based on smoothness, the specific emissivity and the object temperature are inversed. The specific emissivity range is 8-14 μ m, and the resolution is 4cm-1. This data set contains the original radiation curves (in ASCII format) and recording files of cold blackbody, warm blackbody, measured target and gold plate obtained by 102f.

0 2020-03-13

Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)

The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.

0 2020-03-12

Simulated meteorological forcing data of three kilometers and six hours in Heihe River basin (2011-2016)

In east Asia, institute of atmospheric physics, Chinese Academy of Sciences key laboratory of regional climate and environment development of regional integration environment with independent copyright system model RIEMS 2.0, on the basis of the regional climate model RIEMS 2.0 in the United States center for atmospheric research and the development of the university of binzhou mesoscale model (MM5) is a static dynamic framework, coupled with some physical processes needed for the study climate solutions.These processes include the biosphere - atmosphere transmission solutions, using FC80 closed Grell cumulus parameterization scheme, MRF planetary boundary condition and modify the CCM3 radiation, such as the heihe river basin observation and remote sensing data of important parameters in the model for second rate, USES the heihe river basin vegetation data list data of land use in 2000 and 30 SEC DEM data in heihe river basin, build up suitable for the study of heihe river basin ecological - hydrological processes of the regional climate model. Drive field: ERA-INTERIM reanalysis data Spatial scope: the grid center of the simulation area is located at (40.30n, 99.50e), the horizontal resolution is 3 km, and the number of simulated grid points in the model is 161 (meridional) X 201 (zonal). Projection: LAMBERT conformal projection, two standard latitudes of 30N and 60N. Time range: from January 1, 2011 to December 31, 2016, with an interval of 6 hours Description of file contents: monthly storage by grads without format.Except the maximum and minimum temperature as the daily scale, the other variables are all 6-hour data. MATLAB can be used to read, visible tmax_erain_xiong_heihe.m file description. Data description of heihe river basin: 1) Anemometer west wind (m/s) college usurf for short 2) Anemometer south wind(m/s), vsurf for short College 3) Anemometer temperature (deg) K tsurf College 4) maximal temperature (deg) K tmax 5) minimal temperature (deg K) abbreviated as tmin 6) college Anemom specific humidity (g/kg) college qsurf for short 7) value (mm/hr) is simply value p College 8) Accumulated evaporation (mm/hr) evap 9) sensible heat (watts/m**2/hr) for short College 10) Accumulated net infrared radiation (watts/m * * 2 / hr) netrad for short College definition file name: -erain-xiong. Month and year

0 2020-03-11