HiWATER: Dataset of flux observation matrix (NO.1 large aperture scintillometer) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)
  • 2019-09-15
  • 0
  • 1

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.1 in the flux observation matrix. There were two types of LASs at site No.1: German BLS900 and China zzlas. The observation periods were from 7 June to 19 September, 2012, and 16 June to 19 September, 2012, for the BLS900 and the zzlas, respectively. The north tower is placed with the receiver of BLS900 and the transmitter of zzlas, and the south tower is placed with the transmitter of BLS900 and the receiver of zzlas. The site (north: 100.352° E, 38.884° N; south: 100.351° E, 38.855° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 3256 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>3.05E-14). (2) Data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; zzlas: Demod<-40 mv). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS900 measurements; missing flux measurements from the BLS900 were filled with measurements from the zzlas. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

More
HiWATER: Dataset of flux observation matrix (No.12 eddy covariance system) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)
  • 2019-09-15
  • 0
  • 1

This dataset contains the flux measurements from site No.12 eddy covariance system (EC) in the flux observation matrix from 28 May to 21 September, 2012. The site (100.36631° E, 38.86515° N) was located in a cropland (maize surface) in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.25 m. The EC was installed at a height of 3.5 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

More
HiWATER: Dataset of flux observation matrix (eddy covariance system of Upper Daman Superstation) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)
  • 2019-09-15
  • 0
  • 1

This dataset contains the flux measurements from the Daman superstation eddy covariance system (EC) at the highest layer in the flux observation matrix from 30 May to 15 September, 2012. The site (100.37223° E, 38.85551° N) was located in a cropland (maize surface) in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1556.06 m. The EC was installed at a height of 34 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

More
HiWATER: Dataset of the spectral reflectance in the middle of Heihe River Basin
  • 2019-09-15
  • 0
  • 1

This dataset contains the spectra of white cloth and black cloth obtained in the simultaneous time during the airborn remote sensing which supports the airboren data preprocessing as CASI, SASI and TASI , and the spetra of the typical targets in the middle reaches of the Heihe River Basin. Instruments: SVC-HR1024 from IRSA, ASD Field Spec 3 from CEODE, Reference board Measurement method: the spectra radiance of the targets are vertically measured by the SVC or ASD; before and after the target, the spectra radiance of the reference board is measured as the reference. This dataset contains the spectra recorded by the SVC-HR1024 ( in the format of .sig which can be opened by the SVC-HR1024 software or by the notepad ) and the ASD (in the format of .asd), the observation log (in the format of word or excel), and the photos of the measured targets. Observation time: 15-6-2012, the spectra of typical targets in the EC matrix using SVC 16-6-2012, the spectra of typical targets in the wetland by SVC 29-6-2012, the spectra of typical vegetation and soil in Daman site and Gobi site by ASD 29-6-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 30-6-2012, the spectra of vegetation and soil in the desert by ASD 5-7-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 7-7-2012, the spectra of corn in the Daman site for the research of daily speral variation. 8-7-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 8-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 9-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 10-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 11-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation. The time used in this dataset is in UTC+8 Time.

More
Aerosol optical property dataset of the Tibetan Plateau by ground-based observation (2009-2016)
  • 2019-09-15
  • 0
  • 1

The measurement data of the sun spectrophotometer can be directly used to perform inversion on the optical thickness of the non-water vapor channel, Rayleigh scattering, aerosol optical thickness, and moisture content of the atmospheric air column (using the measurement data at 936 nm of the water vapor channel). The aerosol optical property data set of the Tibetan Plateau by ground-based observations was obtained by adopting the Cimel 318 sun photometer, and both the Mt. Qomolangma and Namco stations were involved. The temporal coverage of the data is from 2009 to 2016, and the temporal resolution is one day. The sun photometer has eight observation channels from visible light to near infrared. The center wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm. The field angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. According to the direct solar radiation, the aerosol optical thickness of 6 bands can be obtained, and the estimated accuracy is 0.01 to 0.02. Finally, the AERONET unified inversion algorithm was used to obtain aerosol optical thickness, Angstrom index, particle size spectrum, single scattering albedo, phase function, birefringence index, asymmetry factor, etc.

More
HiWATER: Dataset of flux observation matrix (NO.3 large aperture scintillometer) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)
  • 2019-09-15
  • 0
  • 1

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.3 in the flux observation matrix. There were two types of LASs at site No.3: German BLS900 and Netherland Kipp&zonen. The observation periods were from 6 June to 20 September, 2012, and 19 June to 20 September, 2012, for the BLS900 and the Kipp&zonen, respectively. The north tower is placed with the receiver of BLS900 and the transmitter of Kipp&zonen, and the south tower is placed with the transmitter of BLS900 and the receiver of Kipp&zonen. The site ( (north: 100.373° E, 38.883° N; south: 100.372° E, 38.856° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 3111 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>3.36E-14). (2) Data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; Kipp&zonen: Demod<-20 mv). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS900 measurements; missing flux measurements from the BLS900 were filled with measurements from the Kipp&zonen. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

More
HiWATER: Dataset of BRDF observations in the midstream of the Heihe River Basin
  • 2019-09-15
  • 0
  • 1

This dataset includes the BRF observations of the corn in the Daman site (100.372° E, 38.855° N) on 29-6-2012) and the desert site around the airport (100.700° E, 38.762° N) acquired on 8-7-2012. Instruments: SVC-HR1024 from IRSA, reference board from IRSA, the multi-angular auto-observing shelf developed by BNU Measurement methods: we measure the BRF in the unit of observing plane, i.e. fix the view azimuth then change the view zenith angle to measure the target spectra, including along the principle plane and cross the principle plane at different sun angle. Besides, the planes along and cross the ridge of corn are also measured, specific planes like 0° , 90° away from the north are also observed in the desert. In each observing plane, view zenith angles from -60° to 60° with a interval of 10° are observed. The fiber optic probe with a view field of 25° is fixed at the multi-angular shelf at a height of 5 meters. The spectrum measured by the SVC-HR1024 is ranged from 350 nm-2500 nm. In each plane measurement , the spectral radiance of the reference board is measured first, then the target radiance of different view zenith angle is measured, finally the reference board radiance is measured again. Dataset contains the originally recorded data like the spectra (in sig format) and the log files (in txt format), and the processed data BRDF (in txt format and jpg format). The processed data in the format of txt, contains the observing geometries and corresponding reflectance spectra from 350 nm to 2500 nm. The processed data in the format of jpg, is a quick view of the BRF at 550 nm, 650 nm and 850 nm of each observing plane.

More
Meteorological observation data from the integrated observation and research station of the western environment in Muztagh Ata (2003-2016)
  • 2019-09-15
  • 0
  • 1

This data set includes daily values of temperature, pressure, relative humidity, wind speed, wind direction, precipitation, radiation, water vapour pressure and other elements obtained from the Integrated Observation and Research Station of the Westerly Environment in Muztagh Ata from 18 May 2003 to 31 December 2016. The data are obtained by an automatic meteorological station (Vaisala) that recorded one measurement every 30 minutes. The data set was processed as a continuous time series after the original data were quality controlled. This data set satisfies the accuracy requirements of the meteorological observations of the National Weather Service and the World Meteorological Organization (WMO), and the systematic errors caused by the tracking data and sensor failure have been eliminated. The data set has mainly been applied in the fields of glaciology, climatology, environmental change research, cold zone hydrological process research and frozen soil science. Furthermore, this data set is mainly used by professionals engaged in scientific research and training in atmospheric physics, atmospheric environment, climate, glaciers, frozen soil and other disciplines.

More
HiWATER: Dataset of flux observation matrix (eddy covariance system of Zhangye wetland Station) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)
  • 2019-09-15
  • 0
  • 1

This dataset contains the flux measurements from the Zhangye wetland station eddy covariance system (EC) in the flux observation matrix from 25 June to 26 September, 2012. The site (100.44640° E, 38.97514° N) was located in a wetland surface, which is near Zhangye city, Gansu Province. The elevation is 1460.00 m. The EC was installed at a height of 5.2 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.25 m. Raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/ eddy_covariance/software.html), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, angle of attack correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

More