Basic datasets of the Tibetan highway in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of cryospheric data over China. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System selected three regions with different spatial scales as its main research areas to highlight the research focus. The research area along the Qinghai-Tibet highway is mainly about 700 kilometers long from Xidatan to Naqu, and 20 to 30 kilometers wide on both sides of the highway. The datasets of the Tibetan highway contains the following types of data: 1. Cryosphere data.Including: snow depth distribution. 2. Natural environment and resources.Include: Digital elevation topography (DEM) : elevation elevation, elevation zoning, slope and slope direction; Fundamental geology: Quatgeo 3. Boreholes: drilling data of 200 boreholes along the qinghai-tibet highway. Engineering geological profile (CAD) : lithologic distribution, water content, grain fraction data, etc 4. Model of glacier mass equilibrium distribution along qinghai-tibet highway: prediction of frozen soil grid data. The graphic data along the qinghai-tibet highway includes 13 map scales of 1:250,000.The grid size is 100×100m. For details, please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc", "Chinese Cryospheric Information System data dictionary. Doc", "Database of the Tibetan highway. Doc".

0 2020-06-23

1:150,000 desertification type and land division map of Naiman Banner

This data is digitized from the "Naiman Banner Desertification Types and Land Consolidation Zoning Map" of the drawing. The specific information of this map is as follows: * Editors: Zhu Zhenda and Qiu Xingmin * Editor: Feng Yushun * Re-photography and Mapping: Feng Yushun, Liu Yangxuan, Wen Zi Xiang, Yang Taiyun, Zhao Aifen, Wang Yimou, Li Weimin, Zhao Yanhua, Wang Jianhua * Field trips: Qiu Xingmin and Zhang Jixian * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Shanghai China Printing House * Scale: 1: 150000 * Published: May 1984 * Legend: Severe Desertification Land, Intensely Developed Desertification Land, Developing Desertification Land, Potential Desertification Land, Non-desertification Land, Fluctuating Sandy Loess Plain, Forest and Shrub, Saline-alkali Land, Mountain Land, Cultivated Land and Midian Land 2. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Naiman banner desertification type map, rivers, roads, reservoirs, railways, zoning 3. Data Attributes Desertification Class Vegetation Background Class Desertified land and cultivated sand dunes under development. Midland in Saline-alkali Land Severely desertified land Reservoir Trees and shrubbery Mountain Strongly developing desertified land Potential desertified land Lakes Non-desertification land Undulating sand-loess plain 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

0 2020-06-09

Atlas of 1:100,000 deserts in the upper reaches of the Yellow River (2000)

一. An overview This data set is a 1:100,000 distribution map of China's deserts as the data source, and it is tailored according to the river basin boundary. It mainly reflects the geographical distribution, area size, mobility and fixation degree of deserts, sandy land and gobi in the upper reaches of the Yellow River.The information source of this data set is Landsat TM image in 2000. Using remote sensing and geographic information system technology, according to the requirements of 1:100,000 scale thematic mapping, the thematic mapping of China's deserts, sandlands and gobi was carried out. 二. Data processing instructions This data set takes the 1:100,000 distribution map of China's deserts as the data source and is tailored according to the basin boundary.The information source of this data set is Landsat TM image in 2000. Using remote sensing and geographic information system technology, according to the requirements of 1:100,000 scale thematic mapping, the thematic mapping of China's deserts, sandlands and gobi was carried out.According to the system design requirements and related standards, the input data is standardized and uniformly converted into various data input standard formats. 三. data content description This data set is divided into desert and non-desert category, the non-desert code is 999. The desert is divided into three categories, namely desert (land), gobi and saline-alkali land, and the classification code is 23410, 2342000 and 2343000 respectively.Among them, deserts (land) are divided into four categories, namely mobile desert (land), semi-mobile desert (land), semi-fixed desert (land) and fixed desert (land). The classification codes are 2341010, 2341020, 2341030 and 2341040. 四. Data usage instructions It can make the resources, environment and other related workers understand the desert type, area and distribution in the upper reaches of the Yellow River, and make the classification and evaluation of the wind and sand hazards in ningmeng river section.

0 2020-06-08

ASTER GDEM data in the Heihe River Basin (2009)

The data set includes ASTER GDEM data and its Mosaic. ASTER Global DEM (ASTER GDEM) is a Global digital elevation data product jointly released by NASA and Japan's ministry of economy, trade and industry (METI) on June 29, 2009. The DEM data is based on the observation results of NASA's new earth observation satellite TERRA.It is produced by the ASTER(Advanced Space borne Thermal Emission and Reflection Radio meter) sensor, which collects 1.3 million stereo image data, covering more than 99% of the earth's land surface.The data has a horizontal accuracy of 30 m (95% confidence) and an elevation accuracy of 7-14 m (95% confidence).This data is the third global elevation data, which is significantly higher than previous SRTM3 DEM and GTOPO30 data. We from NASA's web site (http://wist.echo.nasa.gov/api) to download the data of heihe river basin, and through the data center to distribute.The data distributed by the center completely retains the original appearance of the data without any modification to the data.If users need details about ASTER GDEM preparation process, please refer to the data documents of metadata connections, or visit http://www.ersdac.or.jp/GDEM/E/3.html or directly from https://lpdaac.usgs.gov/ reading and ASTER Global DEM related documents. ASTER GDEM is divided into several data blocks of 1×1 degree in distribution, and the distribution format is zip compression format. Each compressed file includes three files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif reademe.pdf Where xx is the starting latitude and yyy is the starting longitude._dem. Tif is the dem data file, _num. Tif is the data quality file, and reademe is the data description file. In order to facilitate users to use the data, on the basis of the fractional ASTER GDEM data, we splice fractional SRTM data to prepare the ASTER GDEM Mosaic map of the black river basin, which retains all the original features of ASTER GDEM without any resamulation. This data includes two files: heihe_aster_gdem_mosaic_dem.img Heihe_Aster_GDEM_Mosaic_num. Img The data is stored in the format of Erdas image, where the file _dem.img is the dem data file and the file _num. Img is the data quality file.

0 2020-06-08

1km DEM dataset in the Heihe River Basin (2011)

The DEM elevation model data set of 1km in heihe river basin generates DEM grid data based on China 1:250,000 digital contour line and elevation point data interpolation released by national basic geographic information center (http://ngcc.sbsm.gov.cn). The data includes Albers projection and longitude and latitude coordinates.A large amount of surface morphology information can be extracted from DEM, including the slope, slope direction and the relationship among cells of the watershed grid, which is an important source data for watershed research.

0 2020-06-08

1:1,000,000 Geomrphological map of the Heihe River basin (2000)

The geomorphic data of Heihe River are from the geomorphic Atlas of the people's Republic of China (1:1 million). This data is based on remote sensing image and other multi-source data integration and update. The main data used and referenced include: 1) remote sensing image data: TM and 2000's around 1990's nationwide About ETM image; 2) historical geomorphic map: 15 published 1 million geomorphic maps, two sets of 1:4 million geomorphic maps in China, 500000 or 1 million geomorphic sketches in all provinces and cities in China; 3) basic geographic data: 1:250000 basic geographic data and 250000 DEM data in China; 4) geological data: 1:500000 geological map in China; 5) relevant thematic maps: land use map, vegetation map and land resource map And so on. The interpretation method adopts the human-computer interaction method based on ArcGIS, and is carried out according to the interpretation sequence of hierarchical classification: the first layer: plain and mountain; the second layer: basic geomorphic types (28); the third layer: 10 genetic types; the fourth layer: secondary genetic types; the fifth layer: morphological difference classification types; the sixth layer: secondary morphological difference classification types; the seventh layer: slope, slope The eighth layer is the type of geomorphic material determined by material composition or lithology; the ninth layer is the combination of 1-7 layers of map spots. There are 441 geomorphic types and codes. Data fields include: fenfu (view frame number), name (attribute), class (code), sname (administrative division).

0 2020-06-08

Geomorphological of China 1:4,000,000

The integration of geomorphological information in western China was completed by a team led by Dr. Xie Chuanjie, Institute of Geography, Resources and Environment, Chinese Academy of Sciences. These include the national geomorphological database of 1: 4 million and the western geomorphological database of 1: 1 million. The geomorphological data of 1: 4 million are tracked, collected and collated by the Geography Department of the National Planning Commission of the Chinese Academy of Sciences, "China Geomorphological Map (1: 4 million)" edited by Li Bingyuan and "Geomorphological Map of China and Its Adjacent Areas (1: 4 million)" edited by Chen Zhiming. Scan and register the data, vectorize all registered maps by ArcMap software, and establish their own classification and code systems. Geomorphological types are divided into basic geomorphological types and morphological structure types (point, line and surface representation) according to map spots (common staining) and symbols. Data are divided into structural geomorphology and morphological geomorphology. Projection information: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: datumg Angular Unit: Degree (0.017453292519943299) Prime Meridian: <custom> (0.000000000000000000) Datum: D_Krasovsky_1940 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

0 2020-06-08

China 1km resolution digital elevation model dataset

DEM is the English abbreviation of Digital Elevation Model, which is an important source of data for river basin terrain and feature recognition. The principle of DEM is to divide the watershed into m rows and n columns of quadrilaterals (CELLs), calculate the average elevation of each quadrilateral, and then store the elevations in a two-dimensional matrix. Because DEM data can reflect local terrain features with a certain resolution, a large amount of surface morphological information can be extracted through DEM. These information include the slope, aspect, and relationship between cells in a watershed grid cell. At the same time, a certain algorithm can be used to determine the surface water flow path, the river network and the boundary of the watershed. Therefore, to extract watershed characteristics from DEM, a good watershed structure model is the premise and key of designing algorithms. The data includes: 1. 1: 1KM basic DEM Data based on China's 1: 250,000 contours and elevation points, including DEM, mountain shadows, slopes, and aspect maps 2. SRTM 1km DEM Cut from SRTM data of 1KM worldwide, including DEM, mountain shadow, slope, aspect map 3. ASTER GDEM According to the 30-meter ASTER GDEM, stitching, cutting, and resampling into 1KM The file formats are: geotiff Data set projection: Projection = Albers Conical Equal Area ", GEOGCS ["Krasovsky", DATUM ["Krasovsky", SPHEROID ["Krasovsky", 6378245,298.3000003760163]], PRIMEM ["Greenwich", 0], UNIT ["degree", 0.0174532925199433]], PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["standard_parallel_1", 25], PARAMETER ["standard_parallel_2", 47], PARAMETER ["latitude_of_center", 0], PARAMETER ["longitude_of_center", 105], PARAMETER ["false_easting", 0], PARAMETER ["false_northing", 0], UNIT ["metre", 1,] Data range: Corner Coordinates: Upper Left (-3656885.097, 6579746.944) (51d 4'21.50 "E, 51d19'19.71" N) Lower Left (-3656885.097, 1560746.944) (73d20'22.18 "E, 9d42'56.35" N) Upper Right (3405114.903, 6579746.944) (155d50'50.17 "E, 52d29'29.44" N) Lower Right (3405114.903, 1560746.944) (134d36'43.08 "E, 10d27'15.15" N) Center (-125885.097, 4070246.944) (103d32'28.11 "E, 37d57'32.64" N)

0 2020-06-07

SRTM DEM data of the Heihe River Basin (2000)

SRTM (Shuttle Radar Topography Mission) is by NASA and the national geospatial intelligence agency (NGA) cooperation to build the global 3 d graphics data project.In February 2000, the SRTM system mounted on the U.S. space shuttle endeavour collected radar image data between latitude 60 ° north and latitude 57 ° south, and acquired radar image data covering more than 80% of the world's land surface.After more than two years of processing, the digital terrain elevation model was made. This data set including the heihe river basin SRTM points picture and Mosaic two kinds of data, and the points of the graph is SRTM version 4 data by the CGIAR - CSI (international centre for tropical agriculture, http://srtm.csi.cgiar.org/) treatment, compared with the previous version has greatly improved, including: 1) use a lot of interpolation algorithm, 2) use more auxiliary DEM data to fill the blank spots and blank area, 3) compared with the third version of the data and migration half a yuan.The Mosaic map is obtained by splicing on the basis of sub-map. The sub-charts include srtm_56_04,srtm_56_05,srtm_57_04 and srtm_57_054. The data are 16 bit values representing the elevation value (-/+/32767 m). The maximum positive elevation is 9000 m and the maximum negative elevation is 12,000 m below sea level.Null data is identified by -32767.Divide the file into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees) per 5 latitude and longitude squares.

0 2020-06-05

The ASTER_GDEM dataset of the Tibetan Plateau (2011)

The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.

0 2020-06-03