Meteorological data of surface environment and observation network in China's cold region (2018)

1) Data content (including elements and significance): 21 stations (Southeast Tibet station, Namucuo station, Zhufeng station, mustag station, Ali station, Naqu station, Shuanghu station, Geermu station, Tianshan station, Qilianshan station, Ruoergai station (northwest courtyard), Yulong Xueshan station, Naqu station (hanhansuo), Haibei Station, Sanjiangyuan station, Shenzha station, gonggashan station, Ruoergai station( Chengdu Institute of biology, Naqu station (Institute of Geography), Lhasa station, Qinghai Lake Station) 2018 Qinghai Tibet Plateau meteorological observation data set (temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and evaporation) 2) Data source and processing method: field observation at Excel stations in 21 formats 3) Data quality description: daily resolution of the site 4) Data application results and prospects: Based on long-term observation data of various cold stations in the Alpine Network and overseas stations in the pan-third pole region, a series of datasets of meteorological, hydrological and ecological elements in the pan-third pole region were established; Strengthen observation and sample site and sample point verification, complete the inversion of meteorological elements, lake water quantity and quality, above-ground vegetation biomass, glacial frozen soil change and other data products; based on the Internet of Things technology, develop and establish multi-station networked meteorological, hydrological, Ecological data management platform, real-time acquisition and remote control and sharing of networked data.

0 2021-10-15

Dataset of rainfall erosivity R-factor with 300m resoluton in 20 countries in key regions(1986-2015)

1)The datase includes a 30-year (1986-2015) average rainfall erosivity raster data for 20 countries in key regions, with a spatial resolution of 300 meters. 2)The 0.5°×0.5° grid daily rainfall data generated by the Climate Prediction Center (CPC) based on global site data was used to calculate the rainfall erosivity R factor of 20 countries in key regions. 3)The daily rainfall data of 2358 weather stations nationwide from China Meteorological Administration from 1986 to 2015 was used to calculate the R value, and the R value calculated by establishing the CPC data source was rechecked and verified. It is found that the R value calculated by the CPC data system was low, and then it was revised, and the final data obtained was of good quality. 4)Rainfall erosivity R factor can be used as the driving factor of the CSLE model, and the data is of great significance for the simulation of soil erosion in 20 countries in key regions and the analysis of its spatial pattern.

0 2021-10-11

Future climate projection of China based on regcm4.6 (2007-2099)

Effective evaluation of future climate change, especially prediction of future precipitation, is an important basis for formulating adaptation strategies. This data is based on the RegCM4.6 model, which is compatible with multi-model and different carbon emission scenarios: CanEMS2 (RCP 45 and RCP85), GFDL-ESM2M (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), HadGEM2-ES (RCP2.6, RCP4.5 And RCP8.5), IPSL-CM5A-LR (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), MIROC5 (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). The future climate data (2007-2099) has 21 sets, with a spatial resolution at 0.25 degrees and the temporal resolution at 3 hours (or 6 hours), daily and yearly scales.

0 2021-09-30

Dynamic downscaling simulation data set nested between global climate model and WRF model (1995-2060)

This data set is the result of dynamic downscaling simulation of CORDEX region 8 (Central Asia) using WRF model driven by MPI-ESM-HR1.2 model data in CMIP6 plan. The data include 2m temperature (variable T2) and precipitation and precipitation was divided into convective (variable RAINC) and non-convective (variable RAINNC) precipitation. The time period includes historical test (1995-2014), near future (2021-2040) and medium future (2041-2060). The future time period includes SSP1-2.6 and SSP5-8.5. The time resolution of the simulation is once every 6 hours, the spatial resolution is 25km, the number of vertical layers is 51, a whole year in 1994 is used as spin up, the SST update is used, and the parameterized scheme combination with good performance in this area is selected. The data set can better reflect the future climate change characteristics of Central Asia and the Qinghai Tibet Plateau, and provide guidance for relevant countries to adapt to climate change.

0 2021-09-17

Simulated forcing dataset of 3km/6hour in Heihe River basin (1980-2080)

Ec-earth-heihe USES the output of the global model of ec-earth as the driving field to simulate the 6-hour data of the Heihe river basin in 2006-2080 under the scenarios of 1980-2005 and RCP4.5.Spatial scope: the grid center of the simulation area is located at (40.30n, 99.50e), the horizontal resolution is 3 km, and the number of simulated grid points in the model is 161 (meridional) X 201 (zonal). Projection: LAMBERT conformal projection, two standard latitudes of 30N and 60N. Time range: from January 1, 1980 to December 31, 2010, with an interval of 6 hours. Description of file contents: monthly storage by grads without format.Except the maximum and minimum temperature as the daily scale, the other variables are all 6-hour data. MATLAB can be used to read, visible tmax_erain_xiong_heihe.m file description. Data description of heihe river basin: 1) Anemometer west wind (m/s) abbreviation usurf 2) Anemometer south wind(m/s), abbreviation vsurf 3) Anemometer temperature (deg K) abbreviation tsurf 4) maximal temperature (deg K) abbreviation tmax 5) minimal temperature (deg K) abbreviated tmin 6) Anemom specific humidity (g/kg) abbreviation qsurf 7) Accumulated precipitation (mm/hr) abbreviation precip 8) Accumulated evaporation (mm/hr) abbreviation evap 9) Accumulated sensible heat (watts/m**2/hr) abbreviation sensible 10) Accumulated net infrared radiation (watts/m * * 2 / hr) abbreviation netrad File name definition: Abbreviation-ec-earth-6hour,YTD For example, precip-ec-earth-6hour.198001,Is the data of 6-hour precipitation in January, 1980 (1) historical 6-hour data driven by the ec-earth global climate model from 1980 to 2005 (2) produce 6-hour data of heihe river basin under the scenario of RCP 4.5 for the global climate model ec-earth from 2006 to 2080

0 2021-08-05

Satellite remote sensing precipitation reanalysis dataset over the Qinghai-Tibet Plateau (1998-2018)

This data is precipitation data, which is the monthly precipitation product of tropical rainfall measurement mission TRMM 3b43. It integrates the main area of the Qinghai Tibet Plateau (25 ~ 40 ° n; 25 ~ 40 ° n); The precipitation data of 332 meteorological stations are from the National Meteorological Information Center of China Meteorological Administration. The reanalysis data set is obtained by the station 3 ° interpolation optimization variational correction method. For the monthly sample data from January 1998 to December 2018, the spatial coverage is 25 ~ 40 ° n; 73 ~ 105 ° e, the spatial resolution is 1 ° * 1 °.

0 2021-07-21

NEX-GDDP dataset over Qinghai-Tibet Plateau (2000–2009, 2090–2099)

This dataset includes daily minimum temperature (Tmin), maximum temperature (Tmax) and precipitation (PPT) data of NEX-GDDP (NASA Earth Exchange Global Daily Downscaled Projections) (v1.0) over the periods of 2000–2009 and 2090–2099. The unit of Tmax and Tmin is K, and the unit of PPT is kgm-2s-1; the background filling value is -999. This dataset is a subset extraction fromthe original data. The original data was downloaded from https://portal.nccs.nasa.gov/datashare/NEXGDDP/BCSD/ in August 2020; The NEX-GDDP data set is obtained from CMIP5 (Coupled Model Intercomparison Project Phase 5) historical climate and General Circulation Models (General Circulation Models) operating in RCP (Representative Concentration Pathways) 4.5 scenario mode, including 21 atmospheric circulation models; among them, 2000 –2005 is a historical climate scenario, and 2006–2009 and 2090-2099 are RCP 4.5 scenarios. For the description of the original data, please refer to https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp.

0 2021-06-18

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Subalpine shrub, 2020

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Subalpine shrub from Janurary 1to December 31, 2020. The site (100°6'3.62"E, 37°31'15.67") was located in the subalpine shrub ecosystem, near the Gangcha County, Qinghai Province. The elevation is 3495m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5 and 10 m, towards north), wind speed and direction profile (windsonic; 3, 5 and 10 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 2 m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, and Ta_10 m; RH_3 m, RH_5 m, and RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, and Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m and WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

0 2021-06-08

Downscaling simulations of future precipitation based on CMIP5 outputs over the Heihe River Basin (2011-2100)

Based on the data of downscaling results in the precipitation historical period of CMIP5 (Coupled Model Intercomparison Project Phase 5), the combined Method of geographical weighted regression and HASM (High Accuracy Surface Modeling Method) was used to analyze the annual mean precipitation in the future three periods of 2011-2040, 2041-2070 and 2071-2100 in the scenario of rcp2.6, rcp4.5 and rcp8.5. Through downscaling simulation and prediction, the 1km downscaling results of the multi-year average precipitation in the three periods of 2011-2040, 2041-2070 and 2071-2100 are obtained.

0 2021-04-08

Basic meteorological data of Yigong (2018-2019)

This data is the data of the automatic weather station (AWS, Campbell company) set up in Yigong Zangbu basin by the Southeast Tibet alpine environment comprehensive observation and research station of Chinese Academy of Sciences in 2018. The geographic coordinates are 30.1741 n, 94.9334 e, and the altitude is 2282m. The underlying surface is grassland. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), water vapor pressure (kPa) and air pressure (MB) and daily accumulated value of precipitation. The original data is an average value recorded in 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The rainfall instrument is tb4, the atmospheric pressure sensor is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Data quality: the quality of the original data is better, less missing. The data station is a meteorological station in the lower altitude of the Qinghai Tibet Plateau, which will be updated from time to time in the future. It can be used by researchers studying climate, hydrology, glaciers, etc.

0 2021-01-27