Satellite remote sensing precipitation reanalysis dataset over the Qinghai-Tibet Plateau (1998-2018)

This data is precipitation data, which is the monthly precipitation product of tropical rainfall measurement mission TRMM 3b43. It integrates the main area of the Qinghai Tibet Plateau (25 ~ 40 ° n; 25 ~ 40 ° n); The precipitation data of 332 meteorological stations are from the National Meteorological Information Center of China Meteorological Administration. The reanalysis data set is obtained by the station 3 ° interpolation optimization variational correction method. For the monthly sample data from January 1998 to December 2018, the spatial coverage is 25 ~ 40 ° n; 73 ~ 105 ° e, the spatial resolution is 1 ° * 1 °.

0 2021-07-21

Ground observed precipitation data in Yadong River Valley (2016-2019)

This data set includes precipitation data from a total of nine ground-based precipitation observation stations located in the Yadong River Valley in the middle of the Himalayas. The observation data was collected by the Hobo tumbler rain gauge developed by Onset company and exported through supporting data reading software. Accumulated counts, the rain gauge tipped once, indicating that 0.2 mm of precipitation was recorded, and the default value of -999 was used when no precipitation event occurred. We screened the collected data and eliminated abnormal values to ensure its quality. This data set has made some progress in the analysis of precipitation characteristics, satellite data verification and model simulation evaluation in this area and two academic papers have been published, which provides strong support for the analysis of precipitation characteristics in the high-altitude valleys of the Himalayas lacking ground observation data.

0 2021-06-23

NEX-GDDP dataset over Qinghai-Tibet Plateau (2000–2009, 2090–2099)

This dataset includes daily minimum temperature (Tmin), maximum temperature (Tmax) and precipitation (PPT) data of NEX-GDDP (NASA Earth Exchange Global Daily Downscaled Projections) (v1.0) over the periods of 2000–2009 and 2090–2099. The unit of Tmax and Tmin is K, and the unit of PPT is kgm-2s-1; the background filling value is -999. This dataset is a subset extraction fromthe original data. The original data was downloaded from https://portal.nccs.nasa.gov/datashare/NEXGDDP/BCSD/ in August 2020; The NEX-GDDP data set is obtained from CMIP5 (Coupled Model Intercomparison Project Phase 5) historical climate and General Circulation Models (General Circulation Models) operating in RCP (Representative Concentration Pathways) 4.5 scenario mode, including 21 atmospheric circulation models; among them, 2000 –2005 is a historical climate scenario, and 2006–2009 and 2090-2099 are RCP 4.5 scenarios. For the description of the original data, please refer to https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp.

0 2021-06-18

Dataset of disaster-prone environment and risk indicators in Hengduan Mountain Area (1961-2020)

Based on China's daily meteorological elements data set and National Geographic basic data, the extreme precipitation, extreme temperature, drought intensity, drought frequency and other indicators in Hengduan Mountain area were calculated by using rclimdex, nspei and bilinear interpolation methods. The data set includes basic data set of disaster pregnant environment, basic data set of extreme precipitation index, basic data set of extreme temperature index, basic data set of drought intensity and frequency. The data set can provide a basic index system for regional extreme high temperature, precipitation and drought risk assessment.

0 2021-06-14

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Subalpine shrub, 2020

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Subalpine shrub from Janurary 1to December 31, 2020. The site (100°6'3.62"E, 37°31'15.67") was located in the subalpine shrub ecosystem, near the Gangcha County, Qinghai Province. The elevation is 3495m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5 and 10 m, towards north), wind speed and direction profile (windsonic; 3, 5 and 10 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 2 m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, and Ta_10 m; RH_3 m, RH_5 m, and RH_10 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, and Ws_10 m) (m/s), wind direction (WD_3 m, WD_5 m and WD_10 m) (°), precipitation (rain) (mm), air pressure (press) (hpa), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

0 2021-06-08

Monthly standard weather station dataset in Sanjiangyuan (1957-2015)

Monthly meteorological data of Sanjiangyuan includes 32 national standard meteorological stations. There are 26 variables: average local pressure, extreme maximum local pressure, date of extreme maximum local pressure, extreme minimum local pressure, date of extreme minimum local pressure, average temperature, extreme maximum temperature, date of extreme maximum temperature, extreme minimum temperature and date of extreme minimum temperature, average temperature anomaly, average maximum temperature, average minimum temperature, sunshine hours, percentage of sunshine, average relative humidity, minimum relative humidity, date of occurrence of minimum relative humidity, precipitation, days of daily precipitation >=0.1mm, maximum daily precipitation, date of maximum daily precipitation, percentage of precipitation anomaly, average wind speed, maximum wind speed, date of maximum wind speed, maximum wind speed, wind direction of maximum wind speed, wind direction of maximum wind speed and occurrence date of maximum wind speed. The data format is txt, named by the site ID, and each file has 26 columns. The names and units of each column are explained in the SURF_CLI_CHN_MUL_MON_readme.txt file. site_id lat lon elv name_cn 52754 37.33 100.13 8301.50 Gangcha 52833 36.92 98.48 7950.00 Wulan 52836 36.30 98.10 3191.10 Dulan 52856 36.27 100.62 2835.00 Qiapuqia 52866 36.72 101.75 2295.20 Xining 52868 36.03 101.43 2237.10 Guizhou 52908 35.22 93.08 4612.20 Wudaoliang 52943 35.58 99.98 3323.20 Xinghai 52955 35.58 100.75 8120.00 Guinan 52974 35.52 102.02 2491.40 Tongren 56004 34.22 92.43 4533.10 Togton He 56018 32.90 95.30 4066.40 Zaduo 56021 34.13 95.78 4175.00 Qumalai 56029 33.02 97.02 3681.20 Yushu 56033 34.92 98.22 4272.30 Maduo 56034 33.80 97.13 4415.40 Qingshui River 56038 32.98 98.10 9200.00 Shiqu 56043 34.47 100.25 3719.00 Guoluo 56046 33.75 99.65 3967.50 Dari 56065 34.73 101.60 8500.00 Henan 56067 33.43 101.48 3628.50 Jiuzhi 56074 34.00 102.08 3471.40 Maqu 56080 35.00 102.90 2910.00 Hezuo 56106 31.88 93.78 4022.80 Suo County 56116 31.42 95.60 3873.10 Dingqing 56125 32.20 96.48 3643.70 Nangqian 56128 31.22 96.60 3810.00 Leiwuqi 56137 31.15 97.17 3306.00 Changdu 56151 32.93 100.75 8530.00 Banma 56152 32.28 100.33 8893.90 Seda

0 2021-04-19

The daily microwave precipitation dataset of Tibetan Plateau(2015-2017)

The strong spatial and temporal changes of precipitation often make it impossible to accurately know the spatial distribution and intensity changes of precipitation during the precipitation observation of conventional foundation stations. Satellite microwave remote sensing can overcome this limitation and achieve global scale precipitation and cloud observation. Compared with infrared/visible light, which can only reflect cloud thickness and cloud height, microwave can penetrate the cloud, and also use the interaction between precipitation and cloud particles in the cloud and microwave to detect the cloud and rain more directly. This data use the surface precipitation, obtained by the DPR double wave band precipitation radar carried by GPM, as the true value, soil temperature/humidity of NDVI, DEM and ERA5 as reference data. And the multi-band passive brightness temperature data of GMI is used to invert the instantaneous precipitation intensity during the warm season (May-September) in Tibetan Plateau, then the result is re-sampled to the spatial resolution of 0.1°and accumulated them to a day.

0 2021-04-09

Time space matching data set of water and soil resources in the Qinghai Tibet Plateau (1970-2016)

The matching data of water and soil resources in the Qinghai Tibet Plateau, the potential evapotranspiration data calculated by Penman formula from the site meteorological data (2008-2016, national meteorological data sharing network), the evapotranspiration under the existing land use according to the influence coefficient of underlying surface, and the rainfall data obtained by interpolation from the site rainfall data in the meteorological data, are used to calculate the evapotranspiration under the existing land use according to the different land types of land use According to the difference, the matching coefficient of water and soil resources is obtained. The difference between the actual rainfall and the water demand under the existing land use conditions reflects the matching of water and soil resources. The larger the value is, the better the matching is. The spatial distribution of the matching of soil and water resources can pave the way for further understanding of the agricultural and animal husbandry resources in the Qinghai Tibet Plateau.

0 2021-04-09

The atmospheric forcing data in the Heihe River Basin (2000-2018)

Near surface atmospheric forcing data were produced by using Wether Research and Forecasting (WRF) model over the Heihe River Basin at hourly 0.05 * 0.05 DEG resolution, including the following variables: 2m temperature, surface pressure, water vapor mixing ratio, downward shortwave & upward longwave radiation, 10m wind field and the accumulated precipitation. The forcing data were validated by observational data collected by 15 daily Chinese Meteorological Bureau conventional automatic weather station (CMA), a few of Heihe River eco-hydrological process comprehensive remote sensing observation (WATER and HiWATER) site hourly observations were verified in different time scales, draws the following conclusion: 2m surface temperature, surface pressure and 2m relative humidity are more reliable, especially 2m surface temperature and surface pressure, the average errors are very small and the correlation coefficients are above 0.96; correlation between downward shortwave radiation and WATER site observation data is more than 0.9; The precipitation agreed well with observational data by being verified based on rain and snow precipitation two phases at yearly, monthly, daily time scales . the correlation coefficient between rainfall and the observation data at monthly and yearly time scales were up to 0.94 and 0.84; the correlation between snowfall and observation data at monthly scale reached 0.78, the spatial distribution of snowfall agreed well with the snow fractional coverage rate of MODIS remote sensing product. Verification of liquid and solid precipitation shows that WRF model can be used for downscaling analysis in complex and arid terrain of Heihe River Basin, and the simulated data can meet the requirements of watershed scale hydrological modeling and water resources balance. The data for 2000-2012 was provided in 2013. The data for 2013-2015 was updated in 2016. The data for 2016-2018 was updated in 2019.

0 2021-04-08

Downscaling simulations of future precipitation based on CMIP5 outputs over the Heihe River Basin (2011-2100)

Based on the data of downscaling results in the precipitation historical period of CMIP5 (Coupled Model Intercomparison Project Phase 5), the combined Method of geographical weighted regression and HASM (High Accuracy Surface Modeling Method) was used to analyze the annual mean precipitation in the future three periods of 2011-2040, 2041-2070 and 2071-2100 in the scenario of rcp2.6, rcp4.5 and rcp8.5. Through downscaling simulation and prediction, the 1km downscaling results of the multi-year average precipitation in the three periods of 2011-2040, 2041-2070 and 2071-2100 are obtained.

0 2021-04-08