HiWATER: Data subset of WSN observation in the midstream of the Heihe River Basin (synchronous with PLMR)
  • 2019-10-18
  • 0
  • 1

The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2017 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format. The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.

More
HiWATER: Dataset of flux observation matrix (NO.1 large aperture scintillometer) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)
  • 2019-09-15
  • 0
  • 1

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.1 in the flux observation matrix. There were two types of LASs at site No.1: German BLS900 and China zzlas. The observation periods were from 7 June to 19 September, 2012, and 16 June to 19 September, 2012, for the BLS900 and the zzlas, respectively. The north tower is placed with the receiver of BLS900 and the transmitter of zzlas, and the south tower is placed with the transmitter of BLS900 and the receiver of zzlas. The site (north: 100.352° E, 38.884° N; south: 100.351° E, 38.855° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 3256 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>3.05E-14). (2) Data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; zzlas: Demod<-40 mv). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS900 measurements; missing flux measurements from the BLS900 were filled with measurements from the zzlas. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

More
HiWATER: SoilNET observation dataset in the midstream of the Heihe River Basin
  • 2019-09-15
  • 0
  • 1

This dataset include soil moisture and soil temperature observations of 50 SoilNET Nodes during June 2012~March 2013 (UTC+8), which located in a MODIS pixel in the observation matrix of the HiWATER artificial oasis eco-hydrology experimental area, and aim to capture the spatial-temporal variance at the ~100 m scale. Each SoilNET node observe the soil moisture and soil temperature at 4 cm, 10 cm, 20 cm and 40 cm depth using the SPADE sensor with 10 minutes interval. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "SoilNET_data_document.docx".

More
HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Yingke oasis and Huazhaizi desert steppe on June 28-29, 2012
  • 2019-09-15
  • 0
  • 1

The first dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Yingke oasis and Huazhaizi desert steppe on 28-29 June, 7, 10, 26 July, 2 August, 2012 (UTC+8). The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Linze Inland River Basin Comprehensive Research Station on 3 July, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted in the southwest part of the Zhangye Oasis, which included two sampling plots. One was located in Gobi desert with an area of 1 km × 1 km. Due to its homogeneous landscape, around 10 points were sampled to acquire the situation of soil water content. The other sampling plot was designed in farmlands with a dominant plant type of maize. Ground measurements took place along 16 transects, which were arranged parallelly with an interval of 160 m between each other in the east-west direction. In each 2.4 km long transect, soil moisture was sampled at every 80 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. For each sampling point in farmland, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). The field campaign started from 11:00 AM, but stopped at 4:00 PM on 28 June because of rain. The rest of measurements were completed from 10:30 AM to 5:30 PM on 29 June. Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within the farmland sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.

More
HiWATER: Dataset of hydrometeorological observation network (No.6 runoff observation system of Gaoya hydrological station, 2013)
  • 2019-09-15
  • 0
  • 1

The No. 6 hydrological section is located at Gaoya Hydrological Station (100.433° E, 39.135° N, 1420 m a.s.l.) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. This hydrological section is for intercomparison of flow measurement between ADCP and manual method. The dataset contains recorded by the No. 6 hydrological section from 10 August, 2012 to 31 December, 2013. The width of this section is 58 meters. The water level was measured using an HOBO pressure range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.

More
HiWATER: ZiYuan-3 (ZY-3) dataset
  • 2019-09-15
  • 0
  • 1

This dataset includes 44 scenes, covering the whole Heihe River Basin, which were acquired on (yy-mm-dd) 2012-08-25, 2012-09-03, 2012-09-08, 2012-09-13, 2012-09-18, 2012-09-23, 2012-09-28, 2012-10-03, 2012-10-13, 2012-10-18, 2012-10-22, 2012-11-01, 2012-11-11, 2012-11-21. The data are of multi-spectral bands with data product of Level 1. The spatial resolution is 1 m. ZY-3 dataset was acquired from purchase.

More
HiWATER: Dataset of intensive runoff observations of No.7 in the midstream of the Heihe River Basin of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)
  • 2019-09-15
  • 0
  • 1

The No. 7 hydrological section is located at Pingchuan Heihe River Bridge (39 ° 20′2.03 ″ N, 100° 5′49.63″ E, 1375 m a.s.l.) in the middle reaches of the Heihe River Basin, Zhangye, Gansu Province. The dataset contains observations from the No.7 hydrological section from 13 June, 2012, to 24 November, 2012. The width of this section is 130 meters. The water level was measured using SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following sections: Water level (recorded every 30 minutes) and Discharge. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.

More
HiWATER: Land surface temperature product in the midstream of the Heihe River Basin (4th, July, 2012)
  • 2019-09-15
  • 0
  • 1

On 4 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in Linze region and Heihe riverway. The relative flight altitude is 2500 meters. Land surface temperature product was obtained at a resolution of 3 m using a modified temperature/emissivity separation algorithm based on TASI surface radiance data. The product were validated with in situ ground measurements. The validation results indicated that the Land surface temperature product agreed with the ground LSTs well with RMSE lower than 1.5 K.

More
HiWATER: Dataset of flux observation matrix (automatic meteorological station of No.17) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)
  • 2019-09-15
  • 0
  • 1

This dataset contains the automatic weather station (AWS) measurements from site No.17 in the flux observation matrix from 12 May to 17 September, 2012. The site (100.36972° E, 38.84510° N) was located in an orchard in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.63 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45C; 5 m, towards north), air pressure (PTB110; 2 m), rain gauge (52203; 10 m), wind speed and direction (034B; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). One of the infrared temperature sensors (IRT_2) was adjusted to a zenith angle of 50° after 6 August. The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

More
HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Bajitan Gobi desert station, 2013)
  • 2019-09-15
  • 0
  • 1

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the Bajitan Gobi desert station between 21 September, 2012, and 31 December, 2013. The site (100.304° E, 38.915° N) was located on a Gobi desert surface in the Bajitan, which is near Zhangye city, Gansu Province. The elevation is 1562 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (010C; 5 and 10 m, north), wind direction profile (020C; 10 m, north), air pressure (PTB110; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFT3; 3 duplicates, -0.06 m, 2 m in the south), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1 m), and soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm and Ms_100 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

More