MODIS daily cloudless snow products in the Tibetan Plateau (2002-2010)

This data is 2002.07.04-2010.12.31 MODIS daily cloudless snow products in the Tibetan Plateau. Due to the snow and cloud reflection characteristics, the use of optical remote sensing to monitor snow is severely disturbed by the weather. This product is based on the most commonly used cloud removal algorithm, using the MODIS daily snow product and passive microwave data AMSR-E snow water equivalent product, and the daily cloudless snow product in the Tibetan Plateau is developed. The accuracy is relatively high. This product has important value for real-time monitoring of snow cover dynamic changes on the Tibetan Plateau. Projection method: Albers Conical Equal Area Datum: D_Krasovsky_1940 Spatial resolution: 500 m Data format: tif Naming rules: maYYMMDD.tif, where ma represents the data name; YY represents the year (01 represents 2001, 02 represents 2002 ...); MM represents the month (01 represents January, 02 represents February ...); DD represents the day (01 Means 1st, 02 means 2nd ...).

0 2020-06-08

China permafrost map based Circum-Arctic map of permafrost and ground-Ice conditions, Version 2 (1997)

The distribution map of permafrost and ground-ice around the Arctic is the only data map of permafrost compiled by the international permafrost association in collaboration with permafrost research institutes of several countries in 1997. The map describes the distribution and properties of permafrost and subsurface ice conditions in the northern hemisphere (20°N to 90°N). Permafrost was divided into continuous (90-100%), discontinuous (50-90%), sporadic (10-50%), island (<10%) and non-permafrost by continuous division of permafrost scope. The subsurface ice abundance at the top 20 m is divided by the percentage of ice volume (>20%, 10-20%, <10% and 0%). Published ESRI-shape files are based on 1:10 million paper maps (Brown et al. 1997). The map can be used in related research such as global climate change, polar resource development and environmental protection. The China section is shown in thumbnail. See the reference for more information (Heginbottom et al. 1993). The format of the data is the ESRI shapefile, you can download it on the snow and ice data center (http://nsidc.org/data/ggd318.html).

0 2020-06-08

Concentrations of soil POPs in the Tibetan Plateau

This data set is the spatial distribution of soil POPs in the Tibetan Plateau, including OCPs, PCBs, PBDEs and PAHs. Fourty soil samples were taken from remote sites (i.e., away from towns, roads, or other human activity) in 8 soil zones of the Tibetan Plateau in 2007. The samples were collected using a stainless steel hand-held corer.Five cores (0-5 cm), taken over an area of ~100 m2, were bulked together to form one sample. The samples were wrapped in aluminum foil twice and sealed in two plastic bags to minimize the possibility for contamination. All the samples were analyzed at Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Chinese Academy of Sciences. The samples were Soxhlet-extracted, purified on an aluminium/silica column (i.d. 8 mm), a gel permeation chromatography (GPC) column subsequently, and were detected on a gas chromatograph with an ion-trap mass spectrometer (GC-MS, Finnigan Trace GC/PolarisQ) operating under MS–MS mode. A CP-Sil 8CB capillary column (50 m ×0.25 mm, film thickness 0.25 μm) was used for OCPs, PCBs and PBDEs, and a DB-5MS column (60 m ×0.25mm, film thickness 0.25 μm) was used for PAHs. Procedural blanks were prepared. The recoveries ranged from 53% to 130% for OCPs, and 58% to 92% for PAHs. The reported concentrations were not corrected for recoveries.

0 2020-05-30

Dataset of soil texture on the Qinghai-Tibet Plateau (2010)

Soil data are extremely important at both global and local scales, and in the absence of reliable soil data, land degradation assessments, environmental impact studies and sustainable land management interventions are severely hampered。By Soil information data in the urgent need of the World, especially under the background of the convention on climate change, international institute for applied systems analysis (IIASA) and the UN food and agriculture organization (FAO) and the Kyoto protocol on Soil carbon measurement and the United Nations food and agriculture organization (FAO)/international global agriculture ecological assessment (GAEZ v3.0) jointly established under the sponsorship of a new generation of World Soil Database (Harmonized World Soil Database version 1.2) (HWSD V1.2). The 2010 data set of soil texture on the qinghai-tibet plateau was culled from the world soil database.Data format :grid format, projected as WGS84.The main soil classification system used is fao-90.Unique verification identifier of core soil institution unit: Mu_global-hwsd database soil mapping unit identifier that connects GIS layers. MU_SOURCE1 and MU_SOURCE2- source database mapping unit identifiers; SEQ- soil unit sequence in the composition of soil mapping unit; Soil classification system USES fao-7 classification system or fao-90 classification system (SU_SYM74 resp.su_sym90) or fao-85 (SU_SYM85). The main fields of the soil property sheet include: ID(database ID) MU_GLOBAL(soil unit identifier) (global) SU_SYMBOL Soil mapping unit SU_SYM74(FAO74classify ); SU_SYM85(FAO85classify); SU_SYM90(FAO90The soil name in a soil classification system); SU_CODE Soil mapping unit code SU_CODE74 Soil unit name SU_CODE85 Soil unit name SU_CODE90 Soil unit name DRAINAGE(19.5); REF_DEPTH(Soil reference depth); AWC_CLASS(19.5); AWC_CLASS(Soil available water content); PHASE1: Real (The soil phase); PHASE2: String (The soil phase); ROOTS: String (Depth classification of obstacles to the bottom of the soil); SWR: String (Characteristics of soil moisture content); ADD_PROP: Real (A specific soil type in a soil unit that is associated with agricultural use); T_TEXTURE(Topsoil texture); T_GRAVEL: Real (Percentage of aggregate volume on top);( unit:%vol.) T_SAND: Real (Top sand content); ( unit:% wt.) T_SILT: Real (surface silt content);(unit: % wt.) T_CLAY: Real (clay content on top);(unit: % wt.) T_USDA_TEX: Real (top-level USDA soil texture classification);(unit: name) T_REF_BULK: Real (top soil bulk density);(unit: kg/dm3.) T_OC: Real (top organic carbon content);(unit: % weight) T_PH_H2O: Real (top ph) (unit: -log(H+)) T_CEC_CLAY: Real (the cationic exchange capacity of the clay layer at the top);(unit: cmol/kg) T_CEC_SOIL: Real (cation exchange capacity of topsoil) (unit: cmol/kg) T_BS: Real (top basic saturation);(unit: %) T_TEB: Real (top exchange base);(unit: cmol/kg) T_CACO3: Real (top carbonate or lime content) (unit: % weight) T_CASO4: Real (top-level sulfate content);(unit: % weight) T_ESP: Real (top layer exchangeable sodium salt);(unit: %) T_ECE: Real (top-level conductivity).(unit: dS/m) S_GRAVEL: Real (percentage of bottom gravel volume);(unit: % vol.) S_SAND: Real (content of underlying sand);(unit: % wt.) S_SILT: Real (substratum silt content);(unit: % wt.) S_CLAY: Real (clay content in the bottom layer);(unit: % wt.) S_USDA_TEX: Real (USDA underlying soil texture classification);(unit: name) S_REF_BULK: Real (bulk density of underlying soil);(unit: kg/dm3.) S_OC: Real (bottom organic carbon content);(unit: % weight) S_PH_H2O: Real (base ph) (unit: -log(H+)) S_CEC_CLAY: Real (cation exchange capacity of the underlying cohesive soil);(unit: cmol/kg) S_CEC_SOIL: Real (cation exchange capacity of underlying soil) (unit: cmol/kg) S_BS: Real (underlying basic saturation);(unit: %) S_TEB: Real (underlying exchangeable base);(unit: cmol/kg) S_CACO3: Real (content of underlying carbonate or lime) (unit: % weight) S_CASO4: Real (substrate sulfate content);(unit: % weight) S_ESP: Real (underlying exchangeable sodium salt);(unit: %) S_ECE: Real (underlying conductivity).(unit: dS/m) This database is divided into two layers, in which the top layer (T) has a soil thickness of (0-30cm) and the bottom layer (S) has a soil thickness of (30-100cm).。 Refer to the instructions for other attribute values HWSD1.2_documentation.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-Chinese description andHWSD.mdb。

0 2020-05-29

Dataset of town boundary in Sanjiangyuan region National Park (2015)

This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.

0 2020-05-29

Dataset of ZY-3 02 satellite images (2017)

The data set is remote sensing image of Resource 3 No. 02 (ZY3-02). ZY3-02 was successfully launched from Taiyuan Satellite Launch Center at 11:17 on May 30, 2016 by Long March 4 B carrier rocket. China-made satellite imagery will be further strengthened in the areas of land surveying and mapping, resource survey and monitoring, disaster prevention and mitigation, agriculture, forestry and water conservancy, ecological environment, urban planning and construction, transportation and other fields. List of files: ZY302_PMS_E98.8_N37.4_201707_L1A0000156704 ZY302_PMS_E100.4_N37.0_20171127_L1A0000217243 ZY302_TMS_E99.5_N37.0_20170717_L1A0000160059 ZY302_TMS_E100.3_N36.6_20171127_L1A0000217279 ZY302_TMS_E100.4_N37.0_20170529_L1A0000139947 Folder Naming Rules: Satellite Name Sensor Name Central Longitude Central Latitude Acquisition Time L1****

0 2020-05-29

Dataset of growing season average NDVI changing trends in Three River Source National Park (2000-2018)

Based on the average NDVI (spatial resolution 250m) of MODIS during the growing season from 2000 to 2018, the trend of NDVI was calculated by using Mann-Kendall trend detection method. Three parks of Three River Source National Park are calculated (CJYQ: Yangtze River Park; HHYYQ: Yellow River Park; LCJYQ: Lancang River Park). CJYQ_NDVI_trend_2000_2018_ok.tif: Changjiang Source Park NDVI trend. CJYQ_NDVI_trend_2000_2018_ok_significant.tif: Changjiang Source Park NDVI change trend, excluding the area that is not significant (p > 0.05). CJYYQ_gs_avg_NDVI_2000.tif: The average NDVI of the Yangtze River Source Park in 2000 growing season. Unit NDVI changes every year.

0 2020-05-29

The dataset of community statistics of each county in Three-River-Source National Park (2017)

This data set contains statistical tables on the community situation of each county in Three-River-Source National Park. The specific contents include: Table 1 includes: number of administrative villages, number of natural villages, number of households, population, number of rural labor force, total value of primary and secondary industries, net income per capita, and number of livestock. Table 2 includes: the ethnic composition of the population (population of each ethnic group), education-related statistics (number of primary and secondary schools and number of students), health-related statistics (number of hospitals, health rooms and medical personnel), and statistics on the education level of the population (number of people with different education levels); Table 3 includes: the grassland (total grassland area, usable grassland area, moderately degraded area and grassland vegetation coverage), woodland (total area, arbor forest area, shrub forest area and sparse forest area), water area (total area, river area, lake area, glacier area, snowy mountain area and wetland area). A total of four counties were designed: Maduo, Qumalai, Zaduo and Zhiduo. This data comes from statistics of government departments.

0 2020-05-29

Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)

The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.

0 2020-04-21

Genetic diversity hotspots and suggested conservation areas of amphibian and reptiles on Qinghai-Tibet Plateau

Based on our field works in the Qinghai-Tibet Plateau (QTP) from 2008 to 2018, and combining data from previous studies, we obtained genetic data of all widely distributed amphibian and reptile species in QTP. Meanwhile, our data covered the whole ranges of all the species. To answer the question: ‘How climatic changes influenced animals of QTP?’, we rebuild the demographic history and analyzed how Quaternary climatic changes impacted animals. Then, we identified the locations of refugia. After constructing spatial pattern of genetic diversity, we identified genetic hotspots which needs more conservation effects. These results are important in biodiversity conservation in QTP.

0 2020-04-10