HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Zhangye wetland station, 2013)


This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Daman Superstation between 22 September, 2012, and 31 December, 2013. The site (100.4464° E, 38.9751° N) was located on a wetland (reed surface) in Zhangye National Wetland Park, Gansu Province. The elevation is 1460 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (03002; 5 and 10 m, north), wind direction profile (03002; 10 m, north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2 and -0.4 m), and four photosynthetically active radiation (PQS-1; install on 28 July, 2013, two above the plants, 6 m, south, one vertically downward and one vertically upward; two below the plants, 0.25 m, south, one vertically downward and one vertically upward).

The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm and Ts_40 cm) (℃), on the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m^-2)).

The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Data were missing during 10 May, 2013 and 30 May, 2013 because of datalogger malfunction; the wind speed data were missing during 1 September, 2013 and 5 September, 2013 because of sensor malfunction. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red.

For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.


Required Data Citation View Data Cite Help About Data Citation
Citations

1. Liu, S.M., Xu, Z.W., Wang, W.Z., Bai, J., Jia, Z., Zhu, M., & Wang, J.M. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4), 1291-1306. doi:10.5194/hess-15-1291-2011.( View Details | Bibtex)

Cite the data

LIU Shaomin, Wang Weizhen. HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Zhangye wetland station, 2013). National Tibetan Plateau Data Center, 2016. doi: 10.3972/hiwater.192.2014.db. (Download the reference: RIS | Bibtex )

Using this data, you must reference article references listed in the Required Data Citation and reference data


References literature

1.Li, X., Liu, S.M., Xiao, Q., Ma, M.G., Jin, R., Che, T., Wang, W.Z., Hu, X.L., Xu, Z.W., Wen, J.G., & Wang, L.X. (2017). A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Scientific Data, 4, 170083. doi:10.1038/sdata.2017.83. (View Details | Download )

2.Song, L.S., Liu, S.M., William Kustas P, Zhou, J., Ma, Y.F. (2015). Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sensing, 7(5), 5828-5848. doi:10.3390/rs70505828. (View Details )

3.Li, X., Cheng, G.D., Liu, S.M., Xiao, Q., Ma, M.G., Jin, R., Che, T., Liu, Q.H., Wang, W.Z., Qi, Y., Wen, J.G., Li, H.Y., Zhu, G.F., Guo, J.W., Ran, Y.H., Wang, S.G., Zhu, Z.L., Zhou, J., Hu, X.L., & Xu, Z.W. (2013). Heihe watershed allied telemetry experimental research (hiwater): scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8), 1145-1160. doi:10.1175/BAMS-D-12-00154.1. (View Details )

4.Zhou, J., Li, M.S., Liu, S.M., Jia, Z.Z., Ma, Y.F. (2015). Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sensing, 7, 7126-7156. (View Details )

5.Li, X., Liu, S.M., Ma, M.G., Xiao, Q., Liu, Q.H., & Jin, R., et al. (2012). (2012). Hiwater:an integrated remote sensing experiment on hydrological and ecological processes in the heihe river basin. Advances in Earth Science, 27(5), 481-498. (View Details | Download )

6.Hu, M.G., Wang, J.H., Ge, Y., Liu, M.X., Liu, S.M., Xu, Z.W., Xu, T.R. (2015). Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere, 6(8), 1032-1044. (View Details )

7.Liu, S.M., Xu, Z.W., Zhu, Z.L., Jia, Z.Z., & Zhu, M.J. (2013). Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 487, 24-38. (View Details )

8.Gao, S.G., Zhu, Z.L., Liu, S.M., Jin, R., Yang, G.C., Tan, L. (2014). Estimating spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32, 54-66. doi:10.1016/j.jag.2014.03.003. (View Details )

9.Xu, T.R., Liu, S.M., Xu, Z.W., Liang, S.L., Xu, L. (2015). A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Sci. China Earth Sci., 58(2), 211-230, doi: 10.1007/s11430-014-4964-7. (View Details )

10.Li, Y., Sun, R., Liu, S.M. (2014). Vegetation Physiological Parameters Setting in the Simple Biosphere Model 2 (SiB2) for alpine meadows in upper reaches of Heihe River. SCIENCE CHINA, doi:10.1007/s11430-014-4909-1. (View Details )

11.Liu, S.M., Xu, Z.W,, Song, L.S., Zhao, Q.Y., Ge, Y., Xu, T.R., Ma, Y.F., Zhu, Z.L., Jia, Z.Z., & Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. doi:10.1016/j.agrformet.2016.04.008. (View Details )

12.Xu, T., Liu, S., Xu, L., Chen, Y., Jia, Z., Xu, Z., Nielson, J. (2015). Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing. 7(3), 3400-3425. doi:10.3390/rs70303400. (View Details )


Support Program

National Natural Science Foundation of China: National Natural Science Foundation of China

User Limit

To respect the intellectual property rights, protect the rights of data authors,expand servglacials of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.

Example of acknowledgement statement is included below: The data set is provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn).


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources

No record

Comment

Sign In to add comments

Keywords
Geographic coverage
Spatial coverage

East: 100.45

South: 38.98

West: 100.45

North: 38.98

Detail
  • File size: 14 MB
  • Browse count: 6,597 Times
  • Apply count: 4 Times
  • Share mode: offline
  • Temporal coverage: 2012-09-22 To 2013-12-31
  • Updated time: 2019-08-07
Download
Contact Information
: LIU Shaomin   LI Xin   Wang Weizhen   SHI Shengjin  

Distributor: National Tibetan Plateau Data Center

Email: data@itpcas.ac.cn

Export metadata