Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (automatic weather station of Heihe remote sensing station, 2018)


This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Heihe remote sensing station from January 1 to December 31, 2018. The site (100.4756° E, 38.8270° N) was located on artificial grassland in Dangzhai Town of Zhangye, Gansu Province. The elevation is 1560 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (1.5 m, north), wind speed and direction (10 m, north), air pressure (2 m), rain gauge (0.7 m), four-component radiometer (1.5 m, south), two infrared temperature sensors (1.5 m, south, vertically downward), soil heat flux (3 duplicates, -0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6 m), and two photosynthetically active radiation (1.5 m, south, one vertically downward and one vertically upward).

The observations included the following: air temperature and humidity (Ta_1.5, RH_1.5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm) (℃),on the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)).

The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red.

For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.


Data file naming and use method

Year+** observatory network+ site+ AWS


Required Data Citation View Data Cite Help About Data Citation
Citations

1. Liu, S.M., Xu, Z.W., Wang, W.Z., Bai, J., Jia, Z., Zhu, M., &Wang, J.M. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4), 1291-1306.( View Details | Download | Bibtex)

Cite the data

LIU Shaomin, LI Xin, XU Ziwei. Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (automatic weather station of Heihe remote sensing station, 2018). National Tibetan Plateau Data Center, 2019. doi: 10.11888/Geogra.tpdc.270176. (Download the reference: RIS | Bibtex )

Using this data, you must reference article references listed in the Required Data Citation and reference data


References literature

1.Xu, Z.W., Ma, Y.F., Liu, S.M., Shi, S.J., &Wang, J.M. (2017). Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56, 127-140. (View Details | Download )

2.Liu, S.M., Xu, Z.W., Song, L.S., Zhao, Q.Y., Ge, Y., Xu, T.R., Ma, Y.F., Zhu, Z.L., Jia, Z.Z., &Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. (View Details | Download )

3.Song, L.S., Liu, S.M., Kustas, W.P., Zhou, J., Xu, Z.W., Xia, T., & Li, M.S. (2016). Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, 230-231, 8-19. (View Details | Download )

4.Song, L.S., Kustas, W.P., Liu, S.M., Colaizzi, P.D., Nieto, H., Xu, Z.W., Ma, Y.F., Li, M.S., Xu, T.R., Agam, N., Tolk, J.A., & Evett, S.R. (2016). Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, 540(540), 574-587. (View Details | Download )

5.Zhang, Q., Sun, R., Jiang, G.Q., Xu, Z.W., & Liu, S.M. (2016). Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and Forest Meteorology, 230-231, 45-57. (View Details | Download )

6.Xu, T.R., Bateni, S.M., & Liang, S.L. (2015). Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE). IEEE Geoscience and Remote Sensing Letters, 12(1), 68-72. (View Details | Download )

7.Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., &Xu, Z.W. (2015). Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 259-263. (View Details | Download )

8.Song, L.S., Liu, S.M., Zhang, X., Zhou, J., & Li, M.S. (2015). Estimating and Validating Soil Evaporation and Crop Transpiration During the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 334-338. (View Details | Download )

9.Qiao, C., Sun, R., Xu, Z.W., Zhang, L., Liu, L.Y., Hao, L.Y., &Jiang, G.Q. (2015). A study of shelterbelt transpiration and cropland evapotranspiration in an irrigated area in the middle reaches of the Heihe River in northwestern China. IEEE Geoscience and Remote Sensing Letters, 12(2), 369-373. (View Details | Download )

10.Zhu, Z.L., Tan, L., Gao, S.G., &Jiao, Q.S. (2015). Oberservation on soil moisture of irrigated cropland by cosmic-ray probe. IEEE Geoscience and Remote Sensing Letters, 12(3), 472-476. (View Details | Download )

11.Ge, Y., Liang, Y.Z., Wang, J.H., Zhao, Q.Y., &Liu, S.M. (2015). Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geoscience and Remote Sensing Letters, 12(3), 656-660. (View Details | Download )

12.Ma, Y.F., Liu, S.M., Zhang, F., Zhou, J., &Jia, Z.Z. (2015). Estimations of regional surface energy fluxes over heterogeneous oasis-desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(3), 671-675. (View Details | Download )

13.Bai, J., Jia, L., Liu, S., Xu, Z., Hu, G., Zhu, M., &Song, L. (2015). Characterizing the Footprint of Eddy Covariance System and Large Aperture Scintillometer Measurements to Validate Satellite-Based Surface Fluxes. IEEE Geoscience and Remote Sensing Letters, 12(5), 943-947. (View Details | Download )

14.Xu, T.R., Liu, S.M., Xu, Z.W., Liang, S.L., &Xu, L. (2015). A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Science China Earth Science, 58(2), 211-230. (View Details | Download )

15.Xu, T., Liu, S., Xu, L., Chen ,Y., Jia, Z., Xu, Z., &Nielson, J. (2015). Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing, 7(3), 3400-3425. (View Details | Download )

16.Zhang, L., Sun, R., Xu, Z.W., Qiao, C., &Jiang, G.Q. (2015). Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China. PLOS ONE, 10(6). (View Details | Download )

17.Song, L.S., Liu, S.M., William Kustas, P., Zhou, J., &Ma, Y.F. (2015). Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sensing, 7(5), 5828-5848. (View Details | Download )

18.Hu, M.G., Wang, J.H., Ge, Y., Liu, M.X., Liu, S.M., Xu, Z.W., &Xu, T.R. (2015). Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere, 6(8), 1032-1044. (View Details | Download )

19.Zhou, J., Li, M.S., Liu, S.M., Jia, Z.Z., &Ma, Y.F. (2015). Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sensing, 7, 7126-7156. (View Details | Download )

20.Gao, S.G., Zhu, Z.L., Liu, S.M., Jin, R., Yang, G.C., &Tan, L. (2014). Estimating spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32, 54-66. (View Details | Download )

21.Li, Y., Sun, R., &Liu, S.M. (2015). Vegetation Physiological Parameters Setting in the Simple Biosphere Model 2 (SiB2) for alpine meadows in upper reaches of Heihe River. Science China Earth Sciences, 58(5), 755-769. (View Details | Download )

22.Liu, S.M., Xu, Z.W., Zhu, Z.L., Jia, Z.Z., &Zhu, M.J. (2013). Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 487, 24-38. (View Details | Download )


Support Program

Pan-Third Pole Environment Study for a Green Silk Road-A CAS Strategic Priority A Program

User Limit

To respect the intellectual property rights, protect the rights of data authors,expand servglacials of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.

Example of acknowledgement statement is included below: The data set is provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn).


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources

No record

Comment

Sign In to add comments

Keywords
Geographic coverage
Spatial coverage

East: 100.48

South: 38.83

West: 100.48

North: 38.83

Detail
  • Temporal resolution: Hourly
  • File size: 13 MB
  • Browse count: 304 Times
  • Apply count: 10 Times
  • Share mode: offline
  • Temporal coverage: 2018-01-01 To 2018-12-31
  • Updated time: 2019-08-09
Add to Data Cart
Contact Information
: LIU Shaomin   LI Xin   XU Ziwei  

Distributor: National Tibetan Plateau Data Center

Email: data@itpcas.ac.cn

Export metadata