Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (large aperture scintillometer of Sidaoqiao superstation, 2018)


This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were one German BLS900 at Sidaoqiao Superstation. The north tower was set up with the BLS900 receiver and the south tower was equipped with the BLS900 transmitter. The site (north: 101.137° E, 42.008° N; south: 101.131° E, 41.987 N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LAS was 25.5 m, and the path length was 2350 m. The data were sampled 1 minute.

The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (Cn2>7.58E-14). (2) The data were rejected when the demodulation signal was small (Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 was selected. Detailed can refer to Liu et al. (2011, 2013).

Several instructions were included with the released data. (1) The missing data from the BLS900 instrument were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red.

For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.


Data file naming and use method

Year+** observatory network+ site no + LAS.


Required Data Citation View Data Cite Help About Data Citation
Citations

1. Liu, S.M., Xu, Z.W., Wang, W.Z., Bai, J., Jia, Z., Zhu, M., &Wang, J.M. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4), 1291-1306.( View Details | Download )

Cite the data

LIU Shaomin, LI Xin, XU Ziwei. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (large aperture scintillometer of Sidaoqiao superstation, 2018). National Tibetan Plateau Data Center, 2019. doi: 10.11888/Geogra.tpdc.270159. (Download the reference: RIS | Bibtex )

Using this data, you must reference article references listed in the Required Data Citation and reference data


References literature

1.Xu, Z.W., Ma, Y.F., Liu, S.M., Shi, S.J., &Wang, J.M. (2017). Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56, 127-140. (View Details | Download )

2.Liu, S.M., Xu, Z.W., Song, L.S., Zhao, Q.Y., Ge, Y., Xu, T.R., Ma, Y.F., Zhu, Z.L., Jia, Z.Z., &Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. (View Details | Download )

3.Song, L.S., Liu, S.M., Kustas, W.P., Zhou, J., Xu, Z.W., Xia, T., & Li, M.S. (2016). Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, 230-231, 8-19. (View Details | Download )

4.Song, L.S., Kustas, W.P., Liu, S.M., Colaizzi, P.D., Nieto, H., Xu, Z.W., Ma, Y.F., Li, M.S., Xu, T.R., Agam, N., Tolk, J.A., & Evett, S.R. (2016). Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, 540(540), 574-587. (View Details | Download )

5.Zhang, Q., Sun, R., Jiang, G.Q., Xu, Z.W., & Liu, S.M. (2016). Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and Forest Meteorology, 230-231, 45-57. (View Details | Download )

6.Xu, T.R., Bateni, S.M., & Liang, S.L. (2015). Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE). IEEE Geoscience and Remote Sensing Letters, 12(1), 68-72. (View Details | Download )

7.Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., &Xu, Z.W. (2015). Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 259-263. (View Details | Download )

8.Song, L.S., Liu, S.M., Zhang, X., Zhou, J., & Li, M.S. (2015). Estimating and Validating Soil Evaporation and Crop Transpiration During the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 334-338. (View Details | Download )

9.Qiao, C., Sun, R., Xu, Z.W., Zhang, L., Liu, L.Y., Hao, L.Y., &Jiang, G.Q. (2015). A study of shelterbelt transpiration and cropland evapotranspiration in an irrigated area in the middle reaches of the Heihe River in northwestern China. IEEE Geoscience and Remote Sensing Letters, 12(2), 369-373. (View Details | Download )

10.Zhu, Z.L., Tan, L., Gao, S.G., &Jiao, Q.S. (2015). Oberservation on soil moisture of irrigated cropland by cosmic-ray probe. IEEE Geoscience and Remote Sensing Letters, 12(3), 472-476. (View Details | Download )

11.Ge, Y., Liang, Y.Z., Wang, J.H., Zhao, Q.Y., &Liu, S.M. (2015). Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geoscience and Remote Sensing Letters, 12(3), 656-660. (View Details | Download )

12.Ma, Y.F., Liu, S.M., Zhang, F., Zhou, J., &Jia, Z.Z. (2015). Estimations of regional surface energy fluxes over heterogeneous oasis-desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(3), 671-675. (View Details | Download )

13.Bai, J., Jia, L., Liu, S., Xu, Z., Hu, G., Zhu, M., &Song, L. (2015). Characterizing the Footprint of Eddy Covariance System and Large Aperture Scintillometer Measurements to Validate Satellite-Based Surface Fluxes. IEEE Geoscience and Remote Sensing Letters, 12(5), 943-947. (View Details | Download )

14.Xu, T.R., Liu, S.M., Xu, Z.W., Liang, S.L., &Xu, L. (2015). A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Science China Earth Science, 58(2), 211-230. (View Details | Download )

15.Xu, T., Liu, S., Xu, L., Chen ,Y., Jia, Z., Xu, Z., &Nielson, J. (2015). Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing, 7(3), 3400-3425. (View Details | Download )

16.Zhang, L., Sun, R., Xu, Z.W., Qiao, C., &Jiang, G.Q. (2015). Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China. PLOS ONE, 10(6). (View Details | Download )

17.Song, L.S., Liu, S.M., William Kustas, P., Zhou, J., &Ma, Y.F. (2015). Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sensing, 7(5), 5828-5848. (View Details | Download )

18.Hu, M.G., Wang, J.H., Ge, Y., Liu, M.X., Liu, S.M., Xu, Z.W., &Xu, T.R. (2015). Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere, 6(8), 1032-1044. (View Details | Download )

19.Zhou, J., Li, M.S., Liu, S.M., Jia, Z.Z., &Ma, Y.F. (2015). Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sensing, 7, 7126-7156. (View Details | Download )

20.Gao, S.G., Zhu, Z.L., Liu, S.M., Jin, R., Yang, G.C., &Tan, L. (2014). Estimating spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32, 54-66. (View Details | Download )

21.Li, Y., Sun, R., &Liu, S.M. (2015). Vegetation Physiological Parameters Setting in the Simple Biosphere Model 2 (SiB2) for alpine meadows in upper reaches of Heihe River. Science China Earth Sciences, 58(5), 755-769. (View Details | Download )

22.Liu, S.M., Xu, Z.W., Zhu, Z.L., Jia, Z.Z., &Zhu, M.J. (2013). Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 487, 24-38. (View Details | Download )


Support Program

Pan-Third Pole Environment Study for a Green Silk Road-A CAS Strategic Priority A Program

User Limit

To respect the intellectual property rights, protect the rights of data authors,expand servglacials of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.

Example of acknowledgement statement is included below: The data set is provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn).


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources

No record

Comment

Sign In to add comments

Keywords
Geographic coverage
Spatial coverage

East: 101.14

South: 41.99

West: 101.13

North: 42.01

Detail
  • Temporal resolution: Hourly
  • File size: 0.54 MB
  • Browse count: 100 Times
  • Download count: 0 Times
  • Share mode: offline
  • Temporal coverage: 2018-01-01 To 2018-12-31
  • Updated time: 2019-08-09
Add to Data Cart
Contact Information
: LIU Shaomin   LI Xin   XU Ziwei  

Distributor: National Tibetan Plateau Data Center

Email: data@itpcas.ac.cn

Export metadata